Arching Over the Mobile Chasm: Platforms and
Runtimes

Sasu Tarkoma and Eemil Lagerspetz

Abstract—Mobile computing is one of the breakthrough tech-
nologies of today with over three billion mobile phones in use. As
the computing power and capabilities of the devices are rapidly
improving, software has become a crucial issue in the mobile
marketplace. Indeed, the current trend is towards converged
communication where Web resources integrate seamlessly with
mobile systems. Platforms, runtimes, and middleware play a vital
role in current distributed systems. This wide technology domain
consists of infrastructure and support services for applications
and application developers. Middleware typically provides sup-
port for various interoperable service deployment and execution
related functions. In this article, we give an update on the state-
of-the-art in the area and discuss current trends and research
challenges.

Index Terms—mobile computing, middleware, operating sys-
tems

I. INTRODUCTION

Mobile devices are increasingly dependent on good soft-
ware and ultimately good user experience. A lot of support
services are needed for developing software in this operating
environment, very different from desktop computing [1], [2],
[3]. These are mainly provided in the middleware layer, lower
than applications, but above the operating system and basic
TCP/IP protocol stack. Thus middleware provides a level of
indirection and transparency for application developers who
save development cost and time, when they use standardized
or well-known interfaces when designing their products. For
example, Web sites and mashups, industrial systems, bank-
ing systems, and stock market systems rely extensively on
middleware. The development time and cost has traditionally
been high for mobile applications and services, operating in
a more challenging environment than a typical fixed network.
The wireless and mobile environment is not very reliable, has
high latency, limited bandwidth, and many different terminal
types. One specific implementation is therefore not necessarily
usable for all mobile equipment on the market.

We identify five key requirements for mobile computing
applications and services, namely:

o Accessibility for ensuring that data is accessible by all
entities.

o Reachability for ensuring that mobile devices and the
service and resources that they host are reachable (and
thus accessible).

« Adaptability which is needed to support good user experi-
ence and cope when the computing environment changes.
Context-awareness is a key part of adaptability.

o Trustworthiness, which is needed to maintain user confi-
dence in the services and the service ecosystem. This

requires facilities for assessing and establishing trust
between entities.

o Universality, which requires the use of interoperable
standards based protocols and formats. This is especially
needed for loosely coupled systems that are combined at
runtime.

Considering these requirements, there is strong motivation
to develop mobile middleware solutions capable of transpar-
ently handling the inconveniences of the operating environ-
ment while supporting adaptability for current devices [4], [5].

II. EVOLUTION

We divide mobile applications and services [6] into four
generations. This allows us to outline some of the significant
trends in the mobile application landscape. Early mobile
phones in the 1980s provided only the basic voice services
and the first generation of mobile applications and services,
introduced around 1991, were restricted by technology. The
two key enablers for application development were the mobile
data connection and the Short Message Service (SMS). Of
these, the role of SMS has been paramount, but in Japan the
iMode has also been instrumental, combining low cost data
and messaging.

The second generation of mobile applications was supported
by built-in browsers, such as the Wireless Application Pro-
tocol (WAP) browsers and, more recently, lightweight Web
browsers. The second generation also introduced Multimedia
Messaging Service (MMS), a new messaging service for
multimedia content (images, audio and video).

The third generation applications and services are supported
by a more sophisticated environment. They are built on top of
a platform offering services such as location support, content
adaptation, storage, and caching. We are now witnessing the
emergence of third generation applications on platforms that
include Series 60, Java ME, Android, and the iPhone. These
new devices that are able to support middleware and complex
applications are often known as smartphones.

If the feature set of a mobile Web browser is considerably
limited due to device constraints it is called a microbrowser.
Limitations might be encountered in the processing power or
display capabilities of mobile devices. However, since 2006,
there has been a marked increase in the number of mobile
devices capable of supporting Web browsers with advanced
features, such as CSS 2.1, JavaScript, and Asynchronous
Javascript (AJAX). It is evident that the two separate universes
of wireless telecommunications and the Internet are on con-
verging evolutionary paths.

The fourth generation of applications has not yet arrived.
Still, we can briefly sketch the expected properties of these
future applications in the light of recent proposals in research
and standardization communities. The fourth generation is
expected to be adaptive not only in terms of application
behaviour and content, but also regarding the networking stack
and wireless interface. Always-on connectivity, multi-mode
communications, mesh networking, and adaptive network in-
terfaces and physical communication media will be important
parts of future mobile computing devices.

The following list summarizes the evolution of mobile
applications and services with approximate dates for the
generations:

o Ist (1990-1999). Text messages (SMS) and mobile data.

Speeds up to tens of Kbps.

o 2nd (1999-2003). Limited browsers, WAP, iMode, and
MMS. Speeds up to 144Kbps.

e 3rd (2003-2008). Mobile platforms, middleware services.
Series 60, J2ME, Android, iPhone. Speeds up to several
Mbps.

o 4th (2008-). Adaptive services, user interfaces, and proto-
cols. Context-awareness, always-on connectivity. Speeds
up to hundreds of Mbps. Emergence of app stores.
Versatile devices: smartphones, pads. Cloud-assisted ap-
plications with social networks.

III. MOBILE PLATFORMS

In this section, we consider the following mobile platforms
and their middleware aspects: Android, BlackBerry, iPhone,
Java 2 ME, Kindle SDK, Maemo and MeeGo, Palm WebOS,
Symbian, and Windows Mobile. At the end of this section, we
summarize the key features of the platforms and discuss their
differences.

A. Android

Android is an operating system and software platform for
mobile devices, based on the Linux OS. Android has been de-
veloped by Google and the Open Handset Alliance consisting
of over thirty companies. The platform allows development
of managed code using a Java-like language. The language
follows the Java syntax, but does not provide the standard
class libraries and APIs, instead the language utilizes libraries
and APIs developed by Google.

Figure 1 presents the Android architecture. The architecture
is based on the Linux kernel and a set of drivers for the various
hardware components, such as display, keypad, audio, and
connectivity. Android includes a set of C/C++ libraries used by
various components of the Android system. The capabilities of
these libraries are exposed to developers through the Android
application framework APIs.

The Android runtime is responsible for the execution of the
custom Java bytecode. The runtime includes the Core Libraries
and the Dalvik Virtual Machine and on top of the libraries
and the runtime, the application framework, which consists of
various managers. On top of the managers reside a number
of bundled applications: for example an email client, SMS
program, calendar, maps, browser, and contacts, all written

Home Contacts Phone Browser

PP ATION FRAMEWOR
Activity Window Content View Notification
Manager Manager Providers System Manager

Package
Manager

Location
Manager

Dalvik Virtual
Machine

Binder (IPC)
Driver

Resource
Manager

Telephony
Manager

Media
Framework

Suiface saLite

Manager

Open

GL|ES WebKit

FreeType

SGL SSL libc

Driver Drive

Keypad WiFi Audio
Driver Driver Drivers

Flash Memory
Driver

Power
Management

Fig. 1. The Android architecture.

using the Java programming language. Developers utilize the
same API that is also used by the built-in core applications.
Android emphasizes component reuse and any component can
publish its capabilities, which can then be utilized by other
components if security constraints do not prevent this.

B. BlackBerry

RIM’s BlackBerry devices are based on a proprietary op-
erating system. The current version (v4) supports Java MIDP
2.0 applications and synchronization with various productivity
suites. The communications model is based on the enterprise
servers that act as email relays. The servers utilize RIM’s
Network Operation Center (NOC) in order to send and receive
messages to and from the mobile devices. Since proprietary
NOC is used, mobile push can be implemented in an efficient
manner.

C. iPhone

The iPhone OS is a mobile operating system developed by
Apple Inc. for their iPhone, iPod touch, and iPad products. The
OS is derived from Max OS X and uses the Darwin foundation,
built around XNU, a hybrid kernel combining the Mach
3 microkernel, elements of Berkeley Software Distribution
(BSD) Unix, and an object-oriented device driver API (I/O
Kit).

Figure 2 presents an overview of the MacOS X architecture,
which has been adapted for the iPhone architecture. The
iPhone system is built on an ARM processor and the Core
OS (Darwin) includes the XNU kernel and system utilities.
The XNU kernel includes POSIX support, networking, and file
system support, as well as device drivers. Above the kernel,
we have the system utilities. Above the operating system, we
have the layered middleware, namely core services, application
services, API layer, and finally the GUI (Aqua).

The iPhone OS is based on four abstraction layers, namely
the Core OS layer, the Core Services layer, the Media layer,
and the Cocoa Touch layer.

‘ GUI (“Aqua”)
API
Carbon BSD | Classic = Cocoa
Quick-

time Application Services

T YR .
Quartz OpenGL PrintCore b |
Core Services

nonGU
API...

N
Core foundation Core services

Core OS (“Darwin”)

oystem Utlities

File systems
Networking NKE
POSIX

1/0 kit Drivers

‘ Hardware

Fig. 2. The iPhone architecture.

The Core OS layer includes the OS X Kernel, TCP/IP
networking stack and the Sockets interface, power manage-
ment, file system, and security features. The Core Services
layer includes Mac OS X application programming interfaces
that are below the Media and Cocoa Touch layers. These
include APIs to services such as networking, threads and
Web. This layer also provides embedded SQLite database and
support for geolocation. The Media layer pertains to the I/O
interfaces of the device, mainly audio mixing and recording,
video playback, OpenGL, and animation support. Finally, the
Cocoa layer supports multi-touch events and controls, with an
interface for accelerometer input and support for localization
(i18n) and camera. The iPhone OS’s user interface is based on
multi-touch gestures such as swiping, tapping, pinching, and
reverse pinching. In some applications, internal accelerometers
are used to alter the screen orientation when the device is
rotated on its y-axis.

Apple provides the SDK as a download without fee, but
approval and payments are needed to release software for the
iPhone platform in the App Store. There users are able to
browse and download applications directly to iPhone, iPod
touch, or iPad.

The five important APIs available for the developer are
illustrated in the API layer in the diagram. They are Car-
bon, Quicktime, BSD/Posix, Classic and Cocoa. Carbon is a
procedural API consisting of separate manager entities. Each
Manager offers an API related to some functionality, defining
the necessary data structures and functions. Managers are often
interdependent or layered. Managers in Carbon include the file
manager, resource manager, font manager, and event manager.
The POSIX specifications define crucial operating system
software interfaces and also a standard threading library API.
The POSIX standard has three important parts, Kernel APIs,
Commands and Utilities, and Conformance Testing. The kernel
APIs include real-time services, threads, security interface,
network file access, and network process-to-process commu-
nications.

Classic Environment is a backwards compatible hardware
and software abstraction layer, no longer supported in the
current Mac OS version. Cocoa Touch provides an abstraction
layer of the iPhone OS, based on the Cocoa which is the native
object-oriented application program environment for the Mac
OS X. Cocoa’s design follows Model-View-Control principles
and its frameworks are written in Objective-C.

The iPhone OS 4.0 was announced in April 2010 and
it supports multitasking for 3rd party applications. The key
design principle is to offer APIs for specific background
operations in order to be able to optimize overall system per-
formance. The new iPhone multitasking-specific APIs include
support for background audio play, VoIP, location services,task
completion, and fast application switching. For example VoIP
applications will be able to receive calls in the background.
Third party push servers are supported for sending notifica-
tions to applications.

The recently announced iPad device is based on the iPhone
OS and thus applications are developed using the iPhone
SDK. The SDK supports the development of three types of
applications, namely iPhone, iPad, and universal applications.
An universal application determines the device type and then
uses the available features based on conditional statements.

D. Java ME

Java ME is a portable solution for creating various mobile
applications downloadable to mobile devices. Java Platform,
Micro Edition (Java ME or previously J2ME) specifies a
standardized collection of Java APIs for the development of
software for small and resource-constrained devices. Target
devices include consumer devices, home appliances, security,
defense, automotive, industrial, industrial control, and multi-
media. From December 2006, the Java ME source code has
been licensed under the GNU General Public License.

A Java ME configuration specifies the virtual machine and
the core libraries. There are two main configurations, namely
Connected Device Configuration (CDC) and Connected Lim-
ited Device Configuration (CLDC). The former is for high
end PDAs and the latter is intended for mobile phones and
other small devices. The configurations are then augmented
by profiles, which define additional APIs for applications.
The most common profile is the Mobile Information Device
Profile (MIDP) aimed at mobile phones. Another well-known
profile is the Personal Profile, aimed at consumer products and
embedded devices.

The Java ME platform’s Mobile Service Architecture
(MSA) specification (JSR 248) defines a standard set of
application functionality for mobile devices, covering also
interactions between various technologies associated with the
MIDP and CLDC specifications. An MSA version 2 device
can use either CLDC 1.1 or CDC 1.1 as its configuration. The
MIDlet execution environment is extended to the Connected
Device Configuration.

To summarize, the Java ME is evolving into a versatile
platform for mobile application development. The introduction
of various JSRs and the MSA version 2 have gradually
removed the early restrictions with MIDP applications and

won growing vendors support for the newer specifications.
Moreover, software portability challenges between CLDC and
CDC are being addressed in MIDP version 3.

For mobile computing, Mobile Sensor API, Contactless
Communication API, and Location API support applications
that are aware of their surroundings and context and compat-
ible with adaptable and tailored content. For instance, Mobile
Broadcast Service API supports the delivery of streaming
multimedia to mobile phones. Converged communications
support is provided by the XML API and IP Multimedia
Subsystem (IMS) Services API [7]. Usability is a crucial selling
point in mobile devices, as amply demonstrated by the iPhone.
Usability themes are addressed by the Mobile User Interface
Customization API and Scalable 2D Vector Graphics API.

E. Kindle SDK

Amazon has recently announced a Kindle SDK that can be
used to develop Java-based active applications for the Kindle
e-book readers. The Kindle SDK is based on the Java ME
Personal Basis profile and Kindle-specific extensions. The
APIs support basic UI, networking, and limited secure storage

on the device!.

F. Maemo and MeeGo

The Maemo platform from Nokia includes the Internet
Tablet OS, which is based on Debian GNU/Linux and draws
much of its GUI, frameworks, and libraries from the GNOME
project. Maemo uses the Matchbox window manager, and like
Ubuntu Mobile, it uses the GTK-based Hildon as its GUI
and application framework. The Maemo platform is intended
for Internet tablets, which are smaller than laptops, but larger
and more versatile than PDAs. A tablet may have a small
keyboard, and central characteristics include a stylus and a
touch-sensitive screen. Graphical interfaces must be designed
with the touch screen in mind.

The Maemo SDK features a sandboxed development envi-
ronment on a GNU/Linux desktop system largely built using a
tool called Scratchbox. This environment behaves in a similar
manner than the actual OS on the Nokia Internet Tablet
devices. Currently C is the only official programming language
for Maemo. The Maemo user interface architecture is based
on the GNOME framework, especially the GTK+ widget set.

For hardware abstraction, Maemo provides the Hardware
Abstraction Layer (HAL) with a shared library that has an
API for device objects. HAL is capable of loading the right
device driver, when a new device is detected, creating and
maintaining /dev files, and tracking the status of devices. The
Maemo platform includes the normal networking protocols,
such as TCP/IP stack, OpenSSL library for network security,
and and libcurl that provides HTTP access for applications.
The D-BUS communication system is used as the primary
channel between applications. Maemo also includes an SQL
database, SQLite, that can be used to store user application
data without centralized server process to connect into. The
applications are built on top of the Hildon framework.

Uhttp://kdk-javadocs.s3.amazonaws.com/index html

The latest development combines Nokia’s Maemo platform
with Intel’s Moblin. The new combined system is called
MeeGo?. Both Maemo and Moblin applications have been
developed mainly with the GTK framework. Now this will
be replaced by the Nokia’s Qt framework. MeeGo is expected
to run on both Atom and ARM processors and to support both
netbooks and mobiles phones. MeeGo applications are written
in C++ using the MeeGo SDK that includes Qt.

Figure 3 presents an overview of the MeeGo architecture.
The architecture follows the typical design of having a hard-
ware abstraction layer (HAL), OS base (Linux kernel, X),
middleware, and then user experience (UX) related functions.
The lowest HAL layer is provided by the device vendor and
it includes kernel drivers and patches, kernel configuration,
modem support, and other software related to the underlying
hardware. The MeeGo includes a set of components called
the content framework to gather and offer user metadata to
application developers.

Qt is a cross-platform application framework designed for
building GUI applications. Qt provides the basic APIs for
GUISs, database, XML, networking, and a WebKit-based Web
runtime. The Qt platform is available for a number of systems
including Windows, MacOS, Linux, Symbian, and Windows
CE.

The Qt API is implemented in C++ and most developers use
C++. At the moment, C++ is the only language that can be
used to create Symbian applications, although other language
bindings are available for other platforms.

The Qt platform is currently being extended to support
device specific APIs pertaining to location, calendar, alarms,
sensors, etc.

G. Palm WebOS

The Palm’s WebOS is a mobile OS running on the Linux
kernel. The runtime system includes a WebKit- based browser,
and applications are written using the JavaScript language.
The WebOS follows the cloud-based services model, in which
clients interact and synchronize directly with cloud-based ser-
vices. Applications use a JavaScript-based framework, called
Mojo, which provides common functions pertaining to UI,
widgets, and data access. A typical WebOS application uses
HTML 5 for presentation and audio/video. The applications
are modelled using the Model-View-Controller architectural
pattern in order to separate concerns.

The Palm WebOS is based on scenes that are pushed and
popped into a scene stack. The top scene in the stack is
visible to the user. The scenes are activated and deactivated
by the execution framework. The scenes and applications
use asynchronous notifications (W3C DOM events) to signal
changes.

H. Symbian and Series 60

The Symbian OS is an open mobile operating system
developed by Symbian Ltd. for ARM processors. The system
includes a microkernel OS, associated libaries, user interface,

2www.MeeGo.com

UX Handheld UX Netbook UX ‘ Other UX
MeeGo Ul Toolkit (Qt) ‘ lGTK/CIutter
Middleware
Comms Internet Visual Media Data Device Personal
Services | Services | Services | | Services Mgmt Services | Services

0S Base “

Fig. 3. The MeeGo architecture.

and reference implementation of common tools. Like many
desktop operating systems Symbian is structured with pre-
emptive multitasking and memory protection. The multitask-
ing model features server-based asynchronous access based on
event passing. The choice of servers, a microkernel design, and
event passing were motivated by three design goals, namely
minimizing response times to users, maximizing integrity and
security, and utilizing scarce resources efficiently.

Nokia has acquired the ownership of Symbian (2008) and
established Symbian Foundation in order to provide royalty-
free software for the mobile environment. In fact, the Symbian
OS and S60, UIQ, and MOAP were made open source in 2010.

The Symbian OS has a microkernel architecture, which
includes a scheduler, memory management, and device drivers.
Other services, like networking, telephony, or filesystem sup-
port are placed in the OS Services Layer or Base Services.

The Base Services Layer is the lowest level reachable by
user-side operations; it includes the File Server and User
Library, the Plug-In Framework which manages all plug-ins,
Store, Central Repository, DBMS, and cryptographic services.
The Base Services layer is responsible for basic connectivity
and serial communications as well as telephony. The com-
munications infrastructure has been developed on this layer
and two prominent networking stacks are the TCP/IP and
WAP stacks. The Web and WAP browsers are available for
the respective protocol stacks.

The Symbian Web runtime is based on the WebKit system
illustrated by Figure 4. The Java runtime and JavaPhone are
available for applications. The figure does not include SyncML
support, also a core feature.

The native language of the Symbian OS is C++, but the
language is not compatible with ANSI C++. The OS and appli-
cations are based on the Model- View-Control (MVC) design
pattern, which support the separation of different functions.
All Symbian applications are built up from three classes that
create the fundamental application behavior: an application
class, a document class, and an application user interface
class. The remaining required functions, the application view,
data model, and data interface, are created independently and
interact solely through their APIs with the other classes.

Hardware Adaptation Software

Reference Ul (Reindeer)

S60 Plug-ins: Browser control API
Flash Lite, SVG,
Audio, etc. WebCore JavaScript

Core

Color Key KJS

KHTML

open-sourced
by Nokia ul

Features

(LGBL+BSD) (LGPL)

OS Adaptation | Memory Manager (BSD)

Symbian OS Symbian HTTP Framework

(S60, Nokia or

Fig. 4. S60 WebKit.

Symbian OS emphasizes resource recovery using several
programming features, such as a cleanup stack and descriptors.
The event-based nature of the OS allows the minimization of
thread switching using a technique called active objects.

In addition to C++ native applications, Widgets are sup-
ported through the Nokia Web Runtime Widgets (WRT). The
WRT environments follows the W3C Widgets specification
and allows the installation and execution of widgets. The
widgets can access device-specific features using a JavaScript
API called Platform Services 2.0.

1. Windows Mobile and .NET Compact Framework

Windows Mobile 6 was released by Microsoft at the 3GSM
World Congress 2007 and it comes in three flavours: standard
version for smartphones, a version for PDAs with phone
functionality, and a classic version for PDAs without phone
features.

Windows Mobile 6 is based on the Windows CE 5.0
operating system and has been designed to integrate with
Windows Live and Exchange products. Software development
for the platform is typically done using Visual C++ or .NET
Compact Framework. When native client-side functionality is
not needed, server-side code can be used that is deployed on a

mobile browser, such as the Internet Explorer Mobile bundled
with Windows Mobile.

The next version is the Windows Phone 7 Series announced
at the 2010 Mobile World congress. WP7 focuses on user
experience and does not support third party software multi-
tasking.

The .NET Compact Framework is a subset of the NET
Framework and shares many components with the desktop
software development environment. The framework includes
an optimized Common Language Runtime (CLR) and a subset
of the NET Framework class library. The advantages of a
managed environment such as CLR include creation of more
trustworthy and platform independent software and the ex-
pectation is that managed components developed using .NET
languages, such as C#, are used to create the applications. The
disadvantage of managed code is the performance penalty in
real-time environments. Garbage collection and Just in Time
(JIT) compilation can introduce unexpected delays to program
execution and cause stochastic behaviour. However, it is also
possible to use the Win32 API with NET CF, which allows
direct access OS features.

J. Summary

Figure 5 presents an overview of the different mobile
platforms and their properties. The first row titled “Devel-
opment” indicates the development languages and the tools
available for the platform. We observe that C, C++ and
Java are currently the dominant programming languages for
mobile devices. The second and third rows pertain to network
scanning and interface control. These functions are interesting
when an application needs to monitor and control the wireless
communications.

”Background processing” denotes the multitasking capabili-
ties of the platform. Energy and power monitoring and control
is an important aspect of mobile platforms. Both multitask-
ing and energy management features vary from system to
system. Memory management and persistent storage are well
supported across the platforms, as well as location information.

HTML 53 is the next version of HTML and is currently in
development with the first public working draft of the spec-
ification available in January 2008 and completion expected
around 2012. Browser vendors, including mobile browser ven-
dors, are already implementing some HTML 5 features as they
are defined. HTML 5 has some features that can significantly
improve current mobile Web applications including network
Web Socket API, advanced forms, offline application API, and
client-side persistent storage (key/value and SQL). HTML 5
support divides the platforms. The iPhone platform has a very
good support for HTML 5. The Session Initiation Protocol [8]
is a key signalling protocol is 3G and 4G wireless access
networks for session management. Some platforms expose a
SIP API to developers.

Three of the surveyed platforms are fully open source,
namely Android, Maemo/MeeGo, and Symbian OS. The plat-
forms have varying systems for supporting 3rd party ap-
plication installation and execution. Execution of privileged

3http://dev.w3 .org/html5/spec/Overview.html

Platform Browser Rendering Flash Widget engine | Comments
engine
Android Android WebKit Yes (for No
Android 2.1)
Apple iPhone Apple iPhone WebKit No Yes
Safari
BlackBerry BlackBerry Mango No Yes Proprietary
push
technology
Opera Mobile Symbian S60, | Presto Yes Yes Opera Mini
Windows supports other
Mobile browser
platforms
using a
proprietary
proxy
Symbian S60 Symbian S60 WebKit Yes Yes
Windows Internet Trident/MSHT | Yes No Silverlight
Mobile Explorer ML support
planned

Fig. 6. Overview of smart phone browsers.

system functions requires certification or other means means of
obtaining permission. The newer platforms are less fragmented
whereas older systems are invariably fragmented.

Figure 6 presents an overview of current smart phone Web
runtimes and browsers, namely Android, iPhone, BlackBerry,
Opera Mobile, Symbian, and Windows Mobile. MeeGo and
PalmOS are based on WebKit. WebKit has support for HTML
5. Some key features of HTML 5 include:

o Better page structuring through new elements (e.g., sec-
tion, header, footer, article, nav and dialog).

e A canvas element with 2D drawing API for dynamic
graphics and animation.

« Direction provision for audio and video content.

« Client-side persistent storage (key/value and SQL).

« Offline application APIs.

o Editing and drag-and-drop APIs.

o Network Web Socket API.

e Cross-document messaging.

IV. CURRENT STATE

The current platform landscape is heterogeneous and several
different operating systems, programming languages, and in-
terfaces are used, resulting in complex mobile software devel-
opment and testing processes. A mobile platform needs to be
flexible and extensible not only in the distributed environment
but also in the local environment. The current and emerging
platforms are still limited in this respect. For example, Java
ME MIDP, iPhone, and Android APIs cannot be extended
easily by a third-party developer, meaning that it is easier to
extend and modify functionality at the server-side instead of
modifying the client.

For high-end mobile phones, Java ME MIDP with its
primitive and limited set of data structures and no access to
the file system is quite restricting for programmers. A more
powerful Java ME configuration and profile can be used but
these are not currently well supported on phones. Full Java 2
API and an easy way to access platform functions is the best
option for Java developers. A MIDP developer can circumvent
some of the limitations by using open source class libraries
that provide the required data structures.

Android Blackberry OS iPhone OS Java ME MIDP Kindle SDK MeeGo Palm Symbian Windows Mobile
Linux 5.0 (iPhone, iPod Linux WebOS Series 60 NET and Windows
touch, iPad) Linux Phone 7
Development Java, native Java MIDP, Objective-C Java ME Java, Personal C/C++, Qt Applications C++, Qt, C/C++, .NET, various
code with JNI Blackberry APIs Basis Profile APls, various with Web Python,
and C/C++ tech. (HTML various
5), C/C++
Network Yes Yes (hotspot No No No Yes Limited (Web Limited Yes
scanning API) apps)
Network Limited Limited (hotspot No No No Yes Limited (Web Yes Yes
interface control API) apps)
Background Yes (services) Yes No (Yes for 4.0) Yes (multi- No Yes Yes Yes Yes, not supported
processing tasking support for third party
in MIDP 3.0) applications in WP7
Energy and Yes Limited (battery Monitoring No No Yes Yes (battery Yes Yes
power info) since 3.0 status,
monitoring and inform
control duration of
activity)
Memory Yes Yes (low-memory Yes Limited Limited Yes Yes (no for Yes Yes
management events) Web apps)
Persistent Yes Yes Yes Limited, Limited secure Yes Yes (HTML 5 Yes Yes
storage exension storage storage)
Location Yes Yes Yes Extension No Yes Yes Yes Yes
information
HTML 5 Yes, support Yes, support Yes N/A N/A Depends on Yes No (Widgets No
depends on depends on WebKit and Javascript
version version version API)
SIP API support Limited No Limited Extension No Yes No Yes Limited
Open Source Yes No No No No Yes No (some Yes No
parts are
Open
Source)
3rd party Certificate, Certificate Certificate, Certificate Kindle DRM Certificate Certificate Certificate Certificate, app store
application Android store Apple AppStore (WP7)
installation
Level of Some Minor Minor Fragmented Not fragmented Not Not Some Some fragmentation
fragmentation fragmentation fragmentation fragmentation fragmented fragmented fragmentation

Fig. 5. Overview of smart phone systems.

The convergence of mobile and traditional IT fields has
caused the increasing popularity of Web technologies in the
development and deployment of mobile applications. It is not
particularly difficult to implement scalable Web applications,
and this has led to a prospering service ecosystem exemplified
by the many massively popular Web sites. Many applications
can be implemented on the basis of current Web technologies,
such as AJAX, REST, OpenlID, OAuth, and other solutions.
However, the Web protocols do not directly work well with
mobile and wireless links and thus using current Web tech-
nologies only supports applications that are natural to realize
using Web’s request/reply interactions style and with minimal
susceptibility to variations in latency. Indeed, asynchronous
operation would be particularly useful in mobile applications
that need to react to changes in the environment.

Web technologies and the TCP/IP protocol stack were not
designed for wireless environments meaning that the perfor-
mance cannot be optimal. Therefore current standardization
and development efforts include for example making XML
more suitable for mobile devices. Typically access to under-

lying system services is not possible. This has been addressed
in some systems by providing specific APIs that expose some
core functionality to applications. For example, Symbian and
iPhone give programmers the possibility to access low level
functions if C++ or Objective-C are used, although this may
require certification.

Support for adaptive operation is an important trend in
mobile applications and services. Adaptation can be realized
in many ways, for example on client devices, on servers,
using proxies and gateways, and through collaboration of the
different entities. Ideally, services and software running on
devices collaborate to realize a service for users. Also context-
awareness brings forth several new challenges: context acquisi-
tion, privacy, and software testing and quality assurance. Test-
ing adaptive and context-aware behavior requires new kinds of
solutions and methods for assuring that software is working
properly and generates desired user experience. Unfortunately,
universal device and service discovery is still not available
for developers. The current trend is to strive towards adaptive
applications by both utilizing Web technology and platform

specific APIs.

As an example, we can take any application that needs to
push information to consumers, such as email or RSS. Current
technological constraints require that push-based applications
are implemented using polling — not a very efficient way
of doing push. The same constraints that make push difficult
also create difficulties for VoIP calls and other media flows.
The SIP protocol architecture [9] and related Network Address
Translation (NAT) traversal specifications, solve most of these
reachability issues; however, the resulting system is very
complex. Although middleware and protocol stack extensions
take care of the complexity for the developer, understanding
of the environment and the protocols that are used is still vital
for the system designer, developer, and tester.

V. TowARDS COMMON APIs

One solution to the current challenge of fragmented de-
vice base and development tools is to have common APIs
for service and application developers. Indeed, both device
manufacturers and telecom operators are actively involved in
various API development and standardization efforts.

The base platforms can be viewed to offer the basic set
of development APIs, such as those for Android, iPhone,
MeeGo, Qt, Symbian, and Windows Mobile. Additional APIs
are necessary to be able to support easy and cross-platform
service creation.

One key aspect is the development language and en-
vironment. Web application development is largely done
with JavaScript. Recent experimental results suggest that
JavaScript-based application platforms can be executed on
Web browsers; however, there are still a number of practical
challenges pertaining to performance and browser limita-
tions [10]. One of the key challenges is to allow a Web-based
application to access local system variables, such as context
variables. The need for security and privacy are paramount.

The PhoneGap is an open source development framework
for building cross-platform mobile applications. The aim is
to allow developers to build applications with HTML and
JavaScript, and still allow them to utilize device-specific
features in Android, iPhone, Symbian, and other devices*.

Web runtimes therefore need to provide access to client-
side platform APIs, such as the file system, geolocation, or
camera. Previously, these APIs have been exclusively available
for native applications. The industry is focusing on JavaScript
and URL-based APIs in order to solve the API fragmenta-
tion problem. At least in theory, JavaScript APIs should be
accessible to any content being rendered by the Web runtime.

The GSM Association has an initiative to define a com-
monly supported API for mobile operators to expose network
information to Web application developers called OneAPI.
These APIs will use both RESTful and Web Services inter-
faces. The first APIs to be implemented will be for messaging
and location functions.

The Open Mobile Terminal Platform (OMTP) group defines
requirements and specifications that aim towards simpler and
more interoperable mobile APIs. BONDI is a browser and

“http://www.phonegap.com/

Website Widget

Browser Widget User Agent

Web Engine (WebKit, ...)
| JavaScript Extension

JavaScript API and Access Control

| Application Invocation, Network, Messaging,

BONDl Communication Log, Media Gallery, Media
code Recording, Personal Information, Persistent Data,
Location, User Interaction, Device Status, System Events,
Policy Management, APIManagement, Extensions
Device Capability Access Control
Operating System
Fig. 7. The BONDI architecture.

widget specification developed by OTMP in collaboration with
W3C’s WebApps working group. BONDI defines require-
ments governing Device Capability access by JavaScript APIs
to promote interoperability and security of implementations>.
The recent 1.1 release of BONDI is compliant with the W3C
Widgets: Packaging and Compliance specification.

The Open Mobile Alliance (OMA), a key mobile stan-
dardization organization, bases its browsing specifications on
Internet technology, but limits profiles for constrained re-
sources and user interfaces of mobile devices. For instance,
it assumes reduced memory, processing power, bandwidth,
and user-input methods. It defines application-level protocols,
semantics, syntax, content formats, user-agent behavior and
use of hypermedia transfer protocols.

The elements of OMA Browsing include:

o WAP Architecture (with or without proxy)

« XHTML Mobile Profile

+« ECMAScipt Mobile Profile (including Document Object

Model), providing for local application scripting capabil-
ity (akin to JavaScript)

o Wireless Cascading Style Sheets (CSS)

e Binary XML (efficient communications)

¢« OMA Push (asynchronous server-initiated content deliv-

ery)

« XMLHttpRequest (forthcoming in OMA Mobile Brows-

ing 2.4, an important Ajax method)

VI. CHALLENGES

Mobile computing and software development faces a num-
ber of key challenges. Based on the survey in this article, we
identify fragmentation as a key challenge. Fragmentation can
happen on multiple layers and dimensions, for example on the
operating system, platform and middleware, and service API
layers. The current state of mobile software development is

Shttp://bondi.omtp.org/default.aspx

that there are a number of significant operating systems and
platforms that need to be supported and that these platforms
have differing programming conventions, interfaces, and soft-
ware distribution solutions. This raises the cost of software
development and slows down the software ecosystem.

In addition to fragmentation, the nature of the APIs and
the features that they expose of the underlying platform are
widely differing. Most systems expose certain underlying
system features, some of which require authorization to access.
For example, access to context information and networking
services varies from system to system. An asynchronous
system-wide event bus is a basic solution for interconnecting
various on-device components; however, there is no single
standard for this. For example, Android and Java ME use
Java-specific events, MeeGo uses D-BUS, and Palm’s WebOS
W3C Events. One particular trend is to utilize URI-based
conventions for naming system resources and services. This is
extensively used in the Nokia Platform Services, WebOS and
the BONDI architecture. An alternative albeit more radical
solution to fragmentation would be to use virtualization to
execute the whole mobile application software stack [11].

Energy consumption is one of the greatest challenges for
current mobile devices. Energy and power continue to remain
the most limiting factors for the performance of mobile com-
puting systems. The battery capacity increases approximately
10% annually while the requirements increase in a more rapid
pace. Especially Internet and Web 2.0 service usage consume
vast amounts of energy and result in short battery lifetimes,
and ultimately poor user experiences. Current research chal-
lenges include how to support energy accounting [12] and
execute applications across mobile devices and cloud-based
systems [13].

VII. CONCLUSIONS

A considerable amount of R&D has gone into solutions
for different kinds of mobile and pervasive environments that
support a wide variety of different applications. However, the
solution landscape is still fragmented. The next step would
be to support access to context information and enable more
intelligent information processing on client devices. This is
needed to fully realize the visions of pervasive and ubiquitous
computing. On the other hand, the current distributed service
trend is to build large computing clusters, server farms and
datacenters, and then connect these with end users.

The separate development lines of mobile devices and
datacenters should be parallel and working together as infor-
mation processing can be distributed between mobile devices
and datacenters. This evidently requires sophisticated rules
for distributing application functionality and mechanisms for
ensuring that private information is not leaked. The possibility
for distributing computation opens up new ways for improv-
ing user experience and increasing mobile device remaining
operating time.

Given that there are over three billion mobile devices on
the market today and the projections indicate that the number
will approach five billion in the near future, the prospects for
mobile applications, service, and middleware appear to be very

promising. To be able to handle such a large amount of users
with possibly widely differing device types and characteristics
necessitates interoperable and high performance platforms, and
highly scalable and available fixed infrastructure.

One step towards extensibility and universality would be to
employ a common and interoperable message bus that supports
component discovery, capability negotiation, and communi-
cations. Both message passing, publish/subscribe [14], and
tuple spaces have been proposed as the key components for
mobile and pervasive software but these ideas have not yet
found their way into products and standardization. HTTP and
runtime-specific APIs or local sockets are still the common
denominator for communications, also for enabling intra-
device communications.

The iPhone OS is pioneering the mobile usage of HTML
5 and it remains to be seen how fast other mobile platforms
adopt this new specification. HTML 5 in combination with
custom JavaScript APIs would open a world of new possibili-
ties for the development of portable and cloud-assisted mobile
software.

Another approach would be to utilize virtualization tech-
niques to support multiple operating systems and platforms on
the same hardware, possibly at the same time. Virtualization
can also be used to enhance security of a system. This is a
future technology still maturing for mobile devices [11].

In this article we have identified the following key re-
quirements for mobile computing: accessibility, reachability,
adaptability, trustworthiness and universality. We maintain that
mobile middleware plays a crucial role in ensuring that these
requirements can be met. Of course, the middleware cannot
meet these requirements alone, but needs support from the
operating system and network protocol stack.

REFERENCES

[1] M. Weiser, “Ubiquitous computing,” Computer, vol. 26, no. 10, pp. 71—
72, 1993.

[2] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Comput., vol. 5, no. 1, pp. 4-7, 2001.

[3] K. Raatikainen, H. B. Christensen, and T. Nakajima, “Application
requirements for middleware for mobile and pervasive systems,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 6,
no. 4, pp. 16-24, oct 2002.

[4] S. Tarkoma, Ed., Mobile Middleware — Architectures, Patterns, and
Practice. Wiley, 2009.

[5] E. Oliver, “A survey of platforms for mobile networks research,”
SIGMOBILE Mobile Computing and Communications Review, vol. 12,
no. 4, pp. 56-63, 2008.

[6] K. M. Dombroviak and R. Ramnath, “A taxonomy of mobile and
pervasive applications,” in SAC ’'07: Proceedings of the 2007 ACM
symposium on Applied computing. New York, NY, USA: ACM, 2007,
pp. 1609-1615.

[7]1 A.Cuevas,J. 1. Moreno, P. Vldales, and H. Einsiedler, “The IMS Service
Platform: A Solution for Next Generation Network Operators to Be
More Than Bit Pipes,” IEEE Communications Magazine, August 2006.

[8] H. Schulzrinne and E. Wedlund, “Application-layer mobility using SIP,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 4, no. 3, pp. 47-57,
2000.

[9] S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu, “Ubiquitous
computing using SIP,” in Proceedings of the 13th International work-
shop on Network and operating systems support for digital audio and
video, June 2003, pp. 82-89, http://www.cs.columbia.edu/IRT/papers/
Berg0306_Ubiquitous.pdf.

[10] T. Mikkonen and A. Taivalsaari, “Creating a mobile web application
platform: the lively kernel experiences,” in SAC ’09: Proceedings of the
2009 ACM symposium on Applied Computing. New York, NY, USA:
ACM, 2009, pp. 177-184.

(1]

[12]

[13]

[14]

L. Rudolph, “A virtualization infrastructure that supports pervasive
computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 813, 2009.
S. M. Rumble, R. Stutsman, P. Levis, D. Mazieres, and N. Zeldovich,
“Apprehending joule thieves with cinder,” in MobiHeld *09: Proceedings
of the 1st ACM workshop on Networking, systems, and applications for
mobile handhelds. New York, NY, USA: ACM, 2009, pp. 49-54.

E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code offload,” in Proc. ACM Mobisys, June 2010.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114-131, 2003.

10

