
Mobile Middleware

Applications and Service
Case Studies

Contents

  Summary of patterns and cases

  Web applications and Firefox OS

  Conclusions

  Assignment status

Patterns for Mobile Computing

  Three categories
  distribution
  resource management and synchronization
  communications

  Distribution patterns pertain to how
resources are distributed and accessed in
the environment.
  remote facade, data transfer object, remote

proxy, and observer
  Resource management and synchronization

  session token, caching, eager acquisition,
lazy acquisition, synchronization, rendezvous,
and state transfer

  Communications
  connection factory, client-initiated

connections, multiplexed communication

Revisiting Patterns 1/4

  Widgets
  Widgets can employ a number of

patterns, typically Remote Proxy and
Broker are pertinent. Observer for
updates.

  Location Awareness.
  Rendezvous and Synchronization are

crucial. This can be achieved using a
Remote Proxy pattern and the
Connection patterns. The Remote
Facade pattern is often applied to
minimize the number of remote calls
needed. Eager Acquisition can be used to
anticipate future information needs.

Revisiting Patterns 2/4

  Generic Mobile push. This application case
is similar to Mobile Server, Location
Awareness, Mobile Advertisement, and
Mobile Video.

  Mobile Push Email. Reachability is vital also
in this application scenario. This is achieved
using the Client-initiated Connection,
Remote Proxy, and Rendezvous patterns.

  Facebook Chat. Multi-tier, client-initiated
connection, Lazy synchronization (contacts),
Rendezvous, and Remote Proxy.

Mobile Advertisement
Example
  The central entities are the end user, the trusted

party, the operator, and the provider
  The trusted party manages end user profiles and

anonymizes user profiles and other data so that
other parties cannot determine user preferences

  The operator is responsible for running the core
system that stores orders

  When an order and offer match, a notification is
generated towards the end user

  The provider is the advertiser and responsible for
the offers and providing advertisement
information that can be then delivered to end
users.

Anonymizer

Resolver

Trusted party

Private and
Public context

End user

Publishing and
rendering

Provide adv.
Offers

Provider

Notifications

Orders

Core System
Notification

profiles

Orders Offers

Administration

Statistics

Operator

Matches

Public context
(weather, time, …)

Offers

Statistics

Adv. Data

Adv. information

Resolver requests notifications

Multi-tier and broker architecture for privacy aware
advertising (example: k-anonymity)

Revisiting Patterns 3/4

  Mobile Advertisement.
  This application requires a combination of

patterns, namely Client-initiated connections,
Rendezvous, Synchronization, Caching,
Remote Proxy, and Broker.

  The connections ensure reachability of the
mobile terminals and allow to the
advertisement system to synchronize
advertisements and impressions with the
mobile device (if they are stored on board).

  Rendezvous is needed to keep track of the
current location of the device.

  Remote proxy is needed to handle the
connections.

  The Broker is used to provide indirection (and
privacy) between different components in the
system.

Revisiting Patterns 4/4

  Mobile Video. This application can utilize the
Client-initiated Connection and Multiplexed
Connection for enabling continuous media
delivery to the client.
  Video-on-demand can be Cached, and

video stream buffering can be seen a
variant of the Eager Acquisition pattern.

  Mobile Server.
  Reachability is vital in this application and

it is achieved using the Client-initiated
Connection, Remote Proxy, and
Rendezvous patterns. Caching can be
used at the Remote Proxy to improve
performance.

Applications: revisiting Web
apps

  The current state is fragmented

  Difficult to achieve portability

  Certain patterns are pervasive (model
view control and others)

  Solutions?

Web Apps

  Emerging as an alternative to native applications

  Hybrid usage: Web content to native application
interfaces

  Web content can partially solved portability issues

  Survey: Android Programmers Shifting Toward
Web Apps
  CNet (03/20/12) Stephen Shankland
  http://news.cnet.com/8301-30685_3-57400136-264/survey-

android-programmers-shifting-toward-web-apps/

HTML5
  HTML 5 is the next version of HTML

  The first public working draft of the
specification available in January 2008 and
completion expected soon

  Improvements
  Web Socket API, advanced forms, offline

application API, and client-side persistent
storage (key/value and SQL).

  HTML 5 support divides the platforms.
  The iPhone platform has a very good support

for HTML 5
  Also Windows Phone and Android support it
  http://mobilehtml5.org/

Source: http://www.developer.nokia.com/Community/Wiki/Cross_Platform_Mobile_Architecture

Firefox OS

  Standalone OS for open WeB
  Applications are developed using standard Web based

technologies
  Everything is a Web app
  HTML5 and JavaScript

  1. Create app, 2.Create manifest (.webapp), 3. publish/
install

  Mozilla Marketplace
  Built-in carrier billing

  https://hacks.mozilla.org/2012/11/firefox-os-video-
presentations-and-slides-on-the-os-webapis-hacking-
and-writing-apps/

Terms

  Gaia
  The user interface of the Firefox OS platform.

  Gecko
  This is the Firefox OS application runtime
  HTML, CSS, and JavaScript.

  Gonk
  Gonk is the lower level operating system of

the Firefox OS platform.
  Linux kernel and userspace hardware

abstraction layer (HAL).

Source: https://
developer.mozilla.org/en-
US/docs/Mozilla/
Firefox_OS/Platform/
Architecture

Security

  Protect OS, apps, user data
  Principle of least permissions
  Each app runs in its own sandbox
  Sandbox includes also data, cookies,

etc.
  Apps cannot start other apps
  Apps can share content if the proper

permissions have been set (certified
apps)

  More information:
  https://developer.mozilla.org/en-US/docs/

Mozilla/Firefox_OS/Security/Security_model

App security model

  Web content
  Web apps

  Website with manifest
  Can request access to: Geolocation API, Sensor
  API, Alarm API, FM Radio

  Privileged apps
  ZIP file with manifest & signed
  Access to medium risk APIs

  Certified apps (system apps)
  Access to high risk APIs
  Direct access to: Background services, WebSMS,

WebTelephony, WebBluetooth, MobileConnection API,
Power Management API, Push, …

Security model

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Security/Security_model

Using HTML5, CSS and
JavaScript together with a
number of APIs to build apps
and customize the UI.

APIs: https://hacks.mozilla.org/2013/02/using-webapis-
to-make-the-web-layer-more-capable/

Regular APIs
  Vibration API
  Screen Orientation
  Geolocation API
  Mouse Lock API
  Open WebApps
  Network Information API
  Battery Status API
  Alarm API
  Web Activities
  Push Notifications API
  WebFM API
  WebPayment
  IndexedDB
  Ambient light sensor
  Proximity sensor
  Notification
  FMRadio

Privileged APIs

  Device Storage API
  Browser API
  TCP Socket API
  Contacts API
  systemXHR

Certified APIs

  WebTelephony
  WebSMS
  Idle API
  Settings API
  Power Management API
  Mobile Connection API
  WiFi Information API
  WebBluetooth
  Permissions API
  Network Stats API
  Camera API
  Time/Clock API
  Attention screen
  Voicemail

Planned APIs

  Resource lock API
  UDP Datagram Socket API
  Peer to Peer API
  WebNFC
  WebUSB
  HTTP-cache API
  Calendar API
  Spellcheck API
  LogAPI
  Keyboard/IME API
  WebRTC
  FileHandle API
  Sync API

WEBTELEPHONY

// Telephony object
var tel = navigator.mozTelephony;

// Check if the phone is muted (read/write property)
console.log(tel.muted);

// Check if the speaker is enabled (read/write property)
console.log(tel.speakerEnabled);

// Place a call
var cal = tel.dial(“123456789”);

// Events for that call
call.onstatechange = function (event) {
 /*
 Possible values for state:
 "dialing", "ringing", "busy", "connecting", "connected",
 "disconnecting", "disconnected", "incoming"
 */
 console.log(event.state);
};

// Above options as direct events
call.onconnected = function () {
 // Call was connected
};

call.ondisconnected = function () {
 // Call was disconnected
};

// Receiving a call
tel.onincoming = function (event) {
 var incomingCall = event.call;

 // Get the number of the incoming call
 console.log(incomingCall.number);

 // Answer the call
 incomingCall.answer();
};

// Disconnect a call
call.hangUp();

// Iterating over calls, and taking action depending on their changed status
tel.oncallschanged = function (event) {
 tel.calls.forEach(function (call) {
 // Log the state of each call
 console.log(call.state);
 });
};

WEBSMS

// SMS object
var sms = navigator.mozSMS;

// Send a message
sms.send("123456789", "Hello world!");

// Recieve a message
sms.onreceived = function (event) {
 // Read message
 console.log(event.message);
};

BATTERY
STATUS API

var battery = navigator.mozBattery
if (battery) {
 var batteryLevel = Math.round(battery.level * 100) + "%",
 charging = (battery.charging)? "" : "not ",
 chargingTime = parseInt(battery.chargingTime / 60, 10,
 dischargingTime = parseInt(battery.dischargingTime / 60, 10);

 // Set events
 battery.addEventListener("levelchange", setStatus, false);
 battery.addEventListener("chargingchange", setStatus, false);
 battery.addEventListener("chargingtimechange", setStatus, false);
 battery.addEventListener("dischargingtimechange", setStatus, false);
}

VIBRATION API

// Vibrate for one second
navigator.mozVibrate(1000);

// Vibration pattern [vibrationTime, pause,…]
navigator.mozVibrate([200, 100, 200, 100]);

// Vibrate for 5 seconds
navigator.mozVibrate(5000);

// Turn off vibration
navigator.mozVibrate(0);

CONTACTS API

var contact = new mozContact();
contact.init({name: "Tom"});

var request = navigator.mozContacts.save(contact);
request.onsuccess = function() {
 console.log("Success");
};

request.onerror = function() {
 console.log("Error")
};

SETTINGS API

var settings = window.navigator.mozSettings;
settings.getLock().set({"background":
"pretty.png"});

DEVICE
STORAGE API

var storage = navigator.getDeviceStorage("videos"),
 cursor = storage.enumerate();

cursor.onerror = function() {
 console.error("Error in DeviceStorage.enumerate()", cursor.error.name);
};

cursor.onsuccess = function() {
 if (!cursor.result)
 return;

 var file = cursor.result;

 // If this isn't a video, skip it
 if (file.type.substring(0, 6) !== "video/") {
 cursor.continue();
 return;
 }

 // If it isn't playable, skip it
 var testplayer = document.createElement("video");
 if (!testplayer.canPlayType(file.type)) {
 cursor.continue();
 return;
 }
}

SCREEN
ORIENTATION
API

// Portrait mode:
screen.mozLockOrientation("portrait");

/*
 Possible values:
 "landscape"
 "portrait"
 "landscape-primary"
 "landscape-secondary"
 "portrait-primary"
 "portrait-secondary"
*/

NETWORK
INFORMATION
API

var connection = window.navigator.mozConnection,
 online = connection.bandwidth > 0,
 metered = connectrion.metered;  
	

KEYBOARD API

var keyboard = window.navigator.mozKeyboard;
keyboard.sendKey(0, keyCode);

Firefox OS

  HTML5 and JavaScript based mobile
apps
  Contrasts native apps on Android, iOS, and

WP

  Standardized APIs to the OS and
middleware

Recent Trends

52

Gartner Hype Curve 2012

Topics
  App stores

  Apple, Nokia, Android, WP8, …
  In-app purchases
  Searching, purchasing, advertising, …

  How to do software updates
  How to support community buildup
  Push notifications

  Dedicated push servers
  Control plane
  Triggers

  Inter-app communication is still in early phases
  Difficult to build on local communication context

(some games do this today)

Sensors

  The number of sensors will increase
dramatically

  Innovative new applications
  Pulse monitor, augmented reality, …

  Plug-in sensors and devices

  Crowdsourcing sensor data and
processing?

  Can we use basestations?
  Decentralized processing?

Challenges

  Cloud integration
  Event-based program flow
  Content storage, search, and sync
  APIs and interoperability

  Mitigating fragmentation

  Energy efficiency

Conclusions

  Mobile software is mainstream
  Appstores
  Better tools and development environments
  Integration with Web resources
  Integration with other apps
  Integration with sensors!

  Challenges include
  Fragmentation in its many forms

  Devices, standards, implementations
  Access to mobile APIs
  Practical ubicomp deployment
  Adaptation

Course Overview

  4 credit course

  Three components
  Lectures
  Assignment
  Literature (three papers and course book)

  Grading based on
  Exam (60%)
  Assignment (40%)

Timetable
  13.3. Introduction and assignments.
  20.3. Platforms, Middleware
  Assignment slot 1: Simple video player
  27.3. Assignment slot 2: Video transmitter
  3.4. easter
  10.4. Patterns
  Assignment slot 3: Video server (video list/selection)
  17.4. Applications: Carat
  24.4. Applications and Summary
  8.5. Assignment slot 4: Mixing table (video mixer)
  Final submission in May
  Exam 14.5. 16:00 in T1

Course Book

  Mobile Middleware –
Architecture, Patterns,
and Practice published by
Wiley
  Publication date 27.3.2009
  Available in digital form

  Several papers to read

Included chapters

  Chapter 1: Introduction
  Chapter 2: Architectures (note 2.6 described old

systems)
  Chapter 3: 3.1-3.3, 3.6
  Chapter 4: Principles and Patterns
  Chapter 8: Data Synchronization
  Chapter 10: Application and Service Case Studies

Additional reading

  Mobile platforms survey, 2011.
  Carat: Collaborative Energy Diagnosis for

Mobile Devices. UCB Tech report, March
2013.

  Analyzing Inter-Application Communication
in Android. Mobisys 2011.

  K. Kumar and Y-H. Lu. Cloud computing for
Mobile Users: Can Offloading Computation
Save Energy? IEEE Computer, 2011.

