
Mobile Middleware

Applications and Service
Case Studies

Contents

  Summary of patterns and cases

  Web applications and Firefox OS

  Conclusions

  Assignment status

Patterns for Mobile Computing

  Three categories
  distribution
  resource management and synchronization
  communications

  Distribution patterns pertain to how
resources are distributed and accessed in
the environment.
  remote facade, data transfer object, remote

proxy, and observer
  Resource management and synchronization

  session token, caching, eager acquisition,
lazy acquisition, synchronization, rendezvous,
and state transfer

  Communications
  connection factory, client-initiated

connections, multiplexed communication

Revisiting Patterns 1/4

  Widgets
  Widgets can employ a number of

patterns, typically Remote Proxy and
Broker are pertinent. Observer for
updates.

  Location Awareness.
  Rendezvous and Synchronization are

crucial. This can be achieved using a
Remote Proxy pattern and the
Connection patterns. The Remote
Facade pattern is often applied to
minimize the number of remote calls
needed. Eager Acquisition can be used to
anticipate future information needs.

Revisiting Patterns 2/4

  Generic Mobile push. This application case
is similar to Mobile Server, Location
Awareness, Mobile Advertisement, and
Mobile Video.

  Mobile Push Email. Reachability is vital also
in this application scenario. This is achieved
using the Client-initiated Connection,
Remote Proxy, and Rendezvous patterns.

  Facebook Chat. Multi-tier, client-initiated
connection, Lazy synchronization (contacts),
Rendezvous, and Remote Proxy.

Mobile Advertisement
Example
  The central entities are the end user, the trusted

party, the operator, and the provider
  The trusted party manages end user profiles and

anonymizes user profiles and other data so that
other parties cannot determine user preferences

  The operator is responsible for running the core
system that stores orders

  When an order and offer match, a notification is
generated towards the end user

  The provider is the advertiser and responsible for
the offers and providing advertisement
information that can be then delivered to end
users.

Anonymizer

Resolver

Trusted party

Private and
Public context

End user

Publishing and
rendering

Provide adv.
Offers

Provider

Notifications

Orders

Core System
Notification

profiles

Orders Offers

Administration

Statistics

Operator

Matches

Public context
(weather, time, …)

Offers

Statistics

Adv. Data

Adv. information

Resolver requests notifications

Multi-tier and broker architecture for privacy aware
advertising (example: k-anonymity)

Revisiting Patterns 3/4

  Mobile Advertisement.
  This application requires a combination of

patterns, namely Client-initiated connections,
Rendezvous, Synchronization, Caching,
Remote Proxy, and Broker.

  The connections ensure reachability of the
mobile terminals and allow to the
advertisement system to synchronize
advertisements and impressions with the
mobile device (if they are stored on board).

  Rendezvous is needed to keep track of the
current location of the device.

  Remote proxy is needed to handle the
connections.

  The Broker is used to provide indirection (and
privacy) between different components in the
system.

Revisiting Patterns 4/4

  Mobile Video. This application can utilize the
Client-initiated Connection and Multiplexed
Connection for enabling continuous media
delivery to the client.
  Video-on-demand can be Cached, and

video stream buffering can be seen a
variant of the Eager Acquisition pattern.

  Mobile Server.
  Reachability is vital in this application and

it is achieved using the Client-initiated
Connection, Remote Proxy, and
Rendezvous patterns. Caching can be
used at the Remote Proxy to improve
performance.

Applications: revisiting Web
apps

  The current state is fragmented

  Difficult to achieve portability

  Certain patterns are pervasive (model
view control and others)

  Solutions?

Web Apps

  Emerging as an alternative to native applications

  Hybrid usage: Web content to native application
interfaces

  Web content can partially solved portability issues

  Survey: Android Programmers Shifting Toward
Web Apps
  CNet (03/20/12) Stephen Shankland
  http://news.cnet.com/8301-30685_3-57400136-264/survey-

android-programmers-shifting-toward-web-apps/

HTML5
  HTML 5 is the next version of HTML

  The first public working draft of the
specification available in January 2008 and
completion expected soon

  Improvements
  Web Socket API, advanced forms, offline

application API, and client-side persistent
storage (key/value and SQL).

  HTML 5 support divides the platforms.
  The iPhone platform has a very good support

for HTML 5
  Also Windows Phone and Android support it
  http://mobilehtml5.org/

Source: http://www.developer.nokia.com/Community/Wiki/Cross_Platform_Mobile_Architecture

Firefox OS

  Standalone OS for open WeB
  Applications are developed using standard Web based

technologies
  Everything is a Web app
  HTML5 and JavaScript

  1. Create app, 2.Create manifest (.webapp), 3. publish/
install

  Mozilla Marketplace
  Built-in carrier billing

  https://hacks.mozilla.org/2012/11/firefox-os-video-
presentations-and-slides-on-the-os-webapis-hacking-
and-writing-apps/

Terms

  Gaia
  The user interface of the Firefox OS platform.

  Gecko
  This is the Firefox OS application runtime
  HTML, CSS, and JavaScript.

  Gonk
  Gonk is the lower level operating system of

the Firefox OS platform.
  Linux kernel and userspace hardware

abstraction layer (HAL).

Source: https://
developer.mozilla.org/en-
US/docs/Mozilla/
Firefox_OS/Platform/
Architecture

Security

  Protect OS, apps, user data
  Principle of least permissions
  Each app runs in its own sandbox
  Sandbox includes also data, cookies,

etc.
  Apps cannot start other apps
  Apps can share content if the proper

permissions have been set (certified
apps)

  More information:
  https://developer.mozilla.org/en-US/docs/

Mozilla/Firefox_OS/Security/Security_model

App security model

  Web content
  Web apps

  Website with manifest
  Can request access to: Geolocation API, Sensor
  API, Alarm API, FM Radio

  Privileged apps
  ZIP file with manifest & signed
  Access to medium risk APIs

  Certified apps (system apps)
  Access to high risk APIs
  Direct access to: Background services, WebSMS,

WebTelephony, WebBluetooth, MobileConnection API,
Power Management API, Push, …

Security model

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Security/Security_model

Using HTML5, CSS and
JavaScript together with a
number of APIs to build apps
and customize the UI.

APIs: https://hacks.mozilla.org/2013/02/using-webapis-
to-make-the-web-layer-more-capable/

Regular APIs
  Vibration API
  Screen Orientation
  Geolocation API
  Mouse Lock API
  Open WebApps
  Network Information API
  Battery Status API
  Alarm API
  Web Activities
  Push Notifications API
  WebFM API
  WebPayment
  IndexedDB
  Ambient light sensor
  Proximity sensor
  Notification
  FMRadio

Privileged APIs

  Device Storage API
  Browser API
  TCP Socket API
  Contacts API
  systemXHR

Certified APIs

  WebTelephony
  WebSMS
  Idle API
  Settings API
  Power Management API
  Mobile Connection API
  WiFi Information API
  WebBluetooth
  Permissions API
  Network Stats API
  Camera API
  Time/Clock API
  Attention screen
  Voicemail

Planned APIs

  Resource lock API
  UDP Datagram Socket API
  Peer to Peer API
  WebNFC
  WebUSB
  HTTP-cache API
  Calendar API
  Spellcheck API
  LogAPI
  Keyboard/IME API
  WebRTC
  FileHandle API
  Sync API

WEBTELEPHONY

// Telephony object
var tel = navigator.mozTelephony;

// Check if the phone is muted (read/write property)
console.log(tel.muted);

// Check if the speaker is enabled (read/write property)
console.log(tel.speakerEnabled);

// Place a call
var cal = tel.dial(“123456789”);

// Events for that call
call.onstatechange = function (event) {
 /*
 Possible values for state:
 "dialing", "ringing", "busy", "connecting", "connected",
 "disconnecting", "disconnected", "incoming"
 */
 console.log(event.state);
};

// Above options as direct events
call.onconnected = function () {
 // Call was connected
};

call.ondisconnected = function () {
 // Call was disconnected
};

// Receiving a call
tel.onincoming = function (event) {
 var incomingCall = event.call;

 // Get the number of the incoming call
 console.log(incomingCall.number);

 // Answer the call
 incomingCall.answer();
};

// Disconnect a call
call.hangUp();

// Iterating over calls, and taking action depending on their changed status
tel.oncallschanged = function (event) {
 tel.calls.forEach(function (call) {
 // Log the state of each call
 console.log(call.state);
 });
};

WEBSMS

// SMS object
var sms = navigator.mozSMS;

// Send a message
sms.send("123456789", "Hello world!");

// Recieve a message
sms.onreceived = function (event) {
 // Read message
 console.log(event.message);
};

BATTERY
STATUS API

var battery = navigator.mozBattery
if (battery) {
 var batteryLevel = Math.round(battery.level * 100) + "%",
 charging = (battery.charging)? "" : "not ",
 chargingTime = parseInt(battery.chargingTime / 60, 10,
 dischargingTime = parseInt(battery.dischargingTime / 60, 10);

 // Set events
 battery.addEventListener("levelchange", setStatus, false);
 battery.addEventListener("chargingchange", setStatus, false);
 battery.addEventListener("chargingtimechange", setStatus, false);
 battery.addEventListener("dischargingtimechange", setStatus, false);
}

VIBRATION API

// Vibrate for one second
navigator.mozVibrate(1000);

// Vibration pattern [vibrationTime, pause,…]
navigator.mozVibrate([200, 100, 200, 100]);

// Vibrate for 5 seconds
navigator.mozVibrate(5000);

// Turn off vibration
navigator.mozVibrate(0);

CONTACTS API

var contact = new mozContact();
contact.init({name: "Tom"});

var request = navigator.mozContacts.save(contact);
request.onsuccess = function() {
 console.log("Success");
};

request.onerror = function() {
 console.log("Error")
};

SETTINGS API

var settings = window.navigator.mozSettings;
settings.getLock().set({"background":
"pretty.png"});

DEVICE
STORAGE API

var storage = navigator.getDeviceStorage("videos"),
 cursor = storage.enumerate();

cursor.onerror = function() {
 console.error("Error in DeviceStorage.enumerate()", cursor.error.name);
};

cursor.onsuccess = function() {
 if (!cursor.result)
 return;

 var file = cursor.result;

 // If this isn't a video, skip it
 if (file.type.substring(0, 6) !== "video/") {
 cursor.continue();
 return;
 }

 // If it isn't playable, skip it
 var testplayer = document.createElement("video");
 if (!testplayer.canPlayType(file.type)) {
 cursor.continue();
 return;
 }
}

SCREEN
ORIENTATION
API

// Portrait mode:
screen.mozLockOrientation("portrait");

/*
 Possible values:
 "landscape"
 "portrait"
 "landscape-primary"
 "landscape-secondary"
 "portrait-primary"
 "portrait-secondary"
*/

NETWORK
INFORMATION
API

var connection = window.navigator.mozConnection,
 online = connection.bandwidth > 0,
 metered = connectrion.metered;  
	

KEYBOARD API

var keyboard = window.navigator.mozKeyboard;
keyboard.sendKey(0, keyCode);

Firefox OS

  HTML5 and JavaScript based mobile
apps
  Contrasts native apps on Android, iOS, and

WP

  Standardized APIs to the OS and
middleware

Recent Trends

52

Gartner Hype Curve 2012

Topics
  App stores

  Apple, Nokia, Android, WP8, …
  In-app purchases
  Searching, purchasing, advertising, …

  How to do software updates
  How to support community buildup
  Push notifications

  Dedicated push servers
  Control plane
  Triggers

  Inter-app communication is still in early phases
  Difficult to build on local communication context

(some games do this today)

Sensors

  The number of sensors will increase
dramatically

  Innovative new applications
  Pulse monitor, augmented reality, …

  Plug-in sensors and devices

  Crowdsourcing sensor data and
processing?

  Can we use basestations?
  Decentralized processing?

Challenges

  Cloud integration
  Event-based program flow
  Content storage, search, and sync
  APIs and interoperability

  Mitigating fragmentation

  Energy efficiency

Conclusions

  Mobile software is mainstream
  Appstores
  Better tools and development environments
  Integration with Web resources
  Integration with other apps
  Integration with sensors!

  Challenges include
  Fragmentation in its many forms

  Devices, standards, implementations
  Access to mobile APIs
  Practical ubicomp deployment
  Adaptation

Course Overview

  4 credit course

  Three components
  Lectures
  Assignment
  Literature (three papers and course book)

  Grading based on
  Exam (60%)
  Assignment (40%)

Timetable
  13.3. Introduction and assignments.
  20.3. Platforms, Middleware
  Assignment slot 1: Simple video player
  27.3. Assignment slot 2: Video transmitter
  3.4. easter
  10.4. Patterns
  Assignment slot 3: Video server (video list/selection)
  17.4. Applications: Carat
  24.4. Applications and Summary
  8.5. Assignment slot 4: Mixing table (video mixer)
  Final submission in May
  Exam 14.5. 16:00 in T1

Course Book

  Mobile Middleware –
Architecture, Patterns,
and Practice published by
Wiley
  Publication date 27.3.2009
  Available in digital form

  Several papers to read

Included chapters

  Chapter 1: Introduction
  Chapter 2: Architectures (note 2.6 described old

systems)
  Chapter 3: 3.1-3.3, 3.6
  Chapter 4: Principles and Patterns
  Chapter 8: Data Synchronization
  Chapter 10: Application and Service Case Studies

Additional reading

  Mobile platforms survey, 2011.
  Carat: Collaborative Energy Diagnosis for

Mobile Devices. UCB Tech report, March
2013.

  Analyzing Inter-Application Communication
in Android. Mobisys 2011.

  K. Kumar and Y-H. Lu. Cloud computing for
Mobile Users: Can Offloading Computation
Save Energy? IEEE Computer, 2011.

