
Mobile Middleware Course

Mobile Platforms and Middleware

Sasu Tarkoma

Middleware

Networking Layer (IP)

Transport Layer (TCP/UDP)

Underlying network (link layer, physical)

Applications

APIs for: RPC, messaging,
transactions, session management,
storage, directories, trading, etc.

Middleware provides various
transparencies (HW, OS, location, fault, ..)

for apps.

The Hourglass

divergence

convergence

diverse physical layers

diverse applications

transport layer (TCP/IP)

Mobile Platforms

  Collections of central services and libraries with
both reactive and proactive functions

  APIs typically logically centralized

  Distributed between elements of the environment
  Multi-tier client-server
  Peer-to-peer
  Hybrids

  The platform running on the mobile terminal and
the characteristics of the device determine how
service is rendered for the end user

Wireless and Cloud

  Wireless hop is the limiting factor
  Bandwidth, connectivity, reachability, tail energy, costs

  Server side scalability can be achieved by using
traditional solutions:
  clusters, caching, geographical distribution, load

balancing, data centers

  Cloud computing
  Integration, offloading
  Web apps vs. native apps

Mobile Service Development

  The mobile landscape is fragmented
  Heterogeneous device base
  Many different wireless technologies

  The situation is challenging for the
developer
  Many APIs

  Open vs. private APIs
  Many middleware platforms
  APIs evolve over time

  Current challenge of the industry pertains
to improving the development processes

PC World Mobile World

SW-Design

Idea

Implementation

Build

Test

Deployment

Operation

Idea

SW-DesignX

Implementation
OS X

SW-DesignY

Implementation
OS Y

Build
Device A

Build
Device B

Test
Device A

Test
Device A

Deployment A Deployment
Downloading B

Operation Operation

Build
Device C

Build
Device D

Test
Device C

Test
Device D

Build
Device E

Test
Device E

Deployment A Deployment
Downloading B

Deployment
Downloading B

Operation Operation Operation

Introduction to Platforms

  Mobile middleware aims to support the
development, deployment, and execution of
distributed applications in the heterogeneous
and dynamic mobile environment.

  The goals for mobile middleware include
adaptability support, fault-tolerance,
heterogeneity, scalability, and context-
awareness.

  The industry solution to these challenges has
been to create middleware platforms.

  A platform collects frequently used services
and APIs under a coherent unified framework.

Platforms

  2009
  Java Micro Edition (Java ME)
  iOS
  Symbian and Series 60
  Windows Mobile
  Linux Maemo (MeeGo)
  Android
  BREW
  WAP

  2012
  iOS
  Android
  Windows Phone 8
  HTML5 web apps

Application Trends

  WP8
  Native apps, cloud integration

  iOS
  Native apps, cloud integration
  Potential for Web apps

  Android
  Native apps, cloud integration

  WebOS
  Web apps with HTML5
  Obsolete (open source)

  Blackberry
  Native and Web apps

Challenges

  Fragmentation is a major problem
  device-level fragmentation
  standard fragmentation
  implementation fragmentation

  Energy consumption
  Modelling: where is the energy going
  Optimization: how to improve things

  Security is also a problem
  Sandboxed environments and privileged

operations require certification
  Certification is difficult for developers
  Current trend is towards application stores

and more lightweight certification processes
  No malware for iOS, plenty for Android

Examples

  Classical examples
  WAP
  Java ME
  Symbian
  MAEMO / MeeGo

  Current Platforms
  Windows Phone 8
  iPhone
  Android
  Web apps

WAE

  Wireless Application Environment (WAE)
  A suite of protocols and specifications for

optimizing data transfer for wireless
communication

  WAP stack
  Focus on binary transmission
  WSP (Wireless Session Protocol)

  HTTP replacement, “compressed”
  WTP (Wireless Transaction Protocol)

  Request/response, more efficient than TCP
  WTLS (Wireless Transport Layer Security)

  Based on TLS, may not be end-to-end with a
gateway

  WDP (Wireless Datagram Protocol)
  UDP replacement

Client

Web
Browser

Server

HTTP
Server

CGI,..

Gateway

Encoders
Decoders

encoded
request

encoded
response

request

response
Protocol

Gateways

wireless

Web Access with Gateway

Web Access

  Data transformation
  WAP gateway performs data transformation

between WML (or XHTML) and HTML
  Data compression

  Technique are used for dealing with images and
other graphics

  Adaptability
  User profile and device characteristics are stored

in the WAP gateway
  Security

  Secure Enterprise Proxy (SEP) using 128-bit
encryption in WAP 1.2

  Service discovery and mobility support
  WAP’s “walled garden” – WAP gateways are

provided by ISP such as AOL

WAE: current status

  WAP Forum now in OMA (Open Mobile Alliance)
  WAP 2.0, is a re-engineering of WAP using a cut-

down version of XHTML with end-to-end HTTP
  Gateway and custom protocol suite is optional.
  WAP used by many handsets

  1.2 version introduced WAP Push (typically using
an SMS message)

  Typically versatile networking stacks with also
IPv6 support

Java Micro Edition (Java ME)

  Java for consumer electronics and
embedded devices

  A virtual machine and a set of APIs
  Configurations and profiles

  Configurations
  two-low level APIs and optimized VMs

•  CDC, CLDC
  Profiles

  API specification on top of a configuration for
complete runtime

  CLDC: MIDP
  CDC: Foundation, Personal Basis, Personal
  Profiles defined using Java Community

Process (JCP)

Servers &
enterprise
computers

Servers &
personal
computers

High-end PDAs
TV set-top boxes
Embedded devices

Mobile
phones&
entry-level
PDAs

Smart
cards

Optional
Packages

Java 2
Platform,
Enterprise
Edition
(J2EE)

JVM™

Optional
Packages

Java 2
Platform,
Standard
Edition
(J2SE)

JVM

Optional
Packages

Personal Profile

Personal
Basis
Profile

Foundation
Profile

JVM
CDC

Optional
Packages

MIDP

CLDC
KVM

Java Card
Card VM

Java Platform, Micro edition (Java ME)

Important JSRs
  75 File Connection and PIM
  82 Bluetooth
  120 Wireless Messaging API (WMA)
  135 Mobile Media API (MMAPI) Audio, video, multimedia
  172 Web Services
  177 Security and Trust Services
  179 Location API
  180 SIP API
  184 Mobile 3D Graphics
  185 Java Technology for the Wireless Industry (JTWI) General
  205 Wireless Messaging 2.0 (WMA)
  211 Content Handler API
  226 SVG 1.0
  229 Payment API
  234 Advanced Multimedia Supplements (AMMS) MMAPI

extensions
  238 Mobile Internationalization API
  239 Java Bindings for the OpenGL ES API
  248 Mobile Service Architecture General

  Collects useful specifications
  256 Mobile Sensor API
  287 SVG 2.0

MIDP 3.0

  MIDP 3 specified in JSR 271 will specify the 3rd
generation mobile APIs.
  AMS (Application Management System)
  Multitasking
  Provisioning and OTA
  Shared libraries
  Security and access control
  Service framework
  Inter-MIDlet communication
  User Interface improvements

  A key design goal of MIDP3 is backward
compatibility with MIDP2 content

  Approved in Dec, 2009. Not supported by current
phones.

Symbian

  OS for handheld devices with limited
resources

  User interface framework
  APIs (C++)
  Tools
  Operating System

  Pre-emptive, multitasking, multithreading,
memory protection

  Event-based, active objects
  Memory conservation, reliability, CPU

optimizations

Software Components

  Kernel
  Manages and controls access to hw
  Hw-supported privileges, kernel mode

  Application
  Program with a user interface
  Runs in user mode in its own process

  Server
  Program without a user interface
  Manages resources, provides interface to clients
  File server, window server, comms, ..

  Engine
  Application part that manipulates data, typically

separate DLL

Key layers

  The Symbian OS System Model contains
the following layers:
  UI Framework Layer.
  Application Services Layer.
  Java ME.
  OS Services Layer: generic OS services,

communications services. multimedia and
graphics services, connectivity services.

  Base Services Layer.
  Kernel Services and Hardware Interface

Layer.

MAEMO and MeeGo

  Open Source development platform for
Nokia Internet Tablets and other Linux-
based devices

  Previously MAEMO, integrated with
Intel’s Moblin to create MeeGo

  MeeGo 1.1 for Atom and ARM
  Nokia is no longer developing MeeGo
  www.meego.com

MeeGo

  Versatile platform for mobile computing
  Linux-based, Qt is the key development

environment
  The MeeGo includes a set of

components called the content
framework to gather and offer user
metadata to application developers

Hardware Adaptation Software

MeeGo Kernel

Comms
Services

Internet
Services

Visual
Services

Media
Services

Data

Mgmt

Device
Services

Personal
Services

MeeGo UI Toolkit (Qt) GTK/Clutter

Handheld UX Netbook UX Other UX

OS Base

Middleware

UX

MeeGo

Qt

  Qt is a cross-platform application framework
  Rapid creation of GUIs

  For Linux and Symbian application development
  The Qt API is implemented in C++ and most Qt

developers use C++ (bindings for other
languages)

  Extensions for using mobile functionality from
within Qt code
  access points, alarms, audio, calendar, camera,

contacts, installer, landmarks, location, media,
messaging, profile, resource access, sensor,
settings, system information, telephony, vibration,
other utilities etc.

Windows Mobile

  Windows Mobile 6 was released by Microsoft at the
3GSM World Congress 2007 and it came in three
flavours
  standard version for smartphones
  a version for PDAs with phone functionality
  a classic version for PDAs without phone features.

  Based on the Windows CE 5.0 operating system and
has been designed to integrate with Windows Live and
Exchange products.

  Software development for the platform is typically done
using Visual C++ or .NET Compact Framework.

Runtime

  The .NET Compact Framework CLR is made up of the
following three component:
  class libraries
  execution engine
  platform adaptation layer

  The purpose of the class libraries is to provide a basic
set of classes, interfaces, and value types
  the foundation for developing applications in .NET.

  The execution engine is the core component of the
CLR. It provides the fundamental services needed for
executing managed code.
  The execution engine includes components such as a JIT

compiler, a class and module loader, and a garbage
collector..

  The PAL layer maps calls from the execution engine to
the functions of the underlying operating system.

CLR

Source: http://en.wikipedia.org/wiki/Common_Language_Runtime

Common Intermediate Language

WP7 and WP8

  Windows Mobile 7 was announced in
2010

  Limited APIs for third party applications
  WP store for applications
  Development: C# and XNA, Silverlight 4,

VB, on-going API work

  WP7 used CE kernel, WP8 uses NT
kernel

Development

  Simple applications with Silverlight
  XML-based UI declaration and C# code
  Executed in .NET CLR
  UI widgets, event based input
  Similar to Android Java and XML

  Games with XNA (WP7)
  C# code executed in .NET CLR
  Direct 3D
  Xbox

  SDK is free of charge
  Microsoft Windows Phone Developer Tools
  Windows 7 required
  Add-on for Visual Basic

Windows Phone

Source: http://fiercedesign.wordpress.com/2012/12/

Android

  Mobile OS and application platform from Google
  Open Handset Alliance
  Linux kernel
  Open Source
  Uses Java to build applications (Java SE class

library parts from Apache Harmony project)
  Optimized virtual machine called ”Dalvik”

  Runs .dex files (derived from .class or .jar)
  Relies on underlying system for process isolation,

memory mng, and threading
  Independent of Sun and JCP
  Java APIs for basic comms, location, SQLite,

OpenGL, SyncML

  2005
  Google acquires startup Android Inc.
  Work on Dalvik VM starts

  2007
  Open Handset Alliance announced
  Early work on Android SDK

  2008
  SDK 1.0 released
  Android released open source (Apache License)

  2009
  SDK 1.5-2.1

  2010
  Nexus One
  SDK 2.2 (Froyo)

  Flash support, tethering
  SDK 2.3 (Gingerbread)

  UI update, system-wide copy-paste
  2011

  SDK 3.0-3.2 (Honeycomb) for tablets only
  New UI for tablets, support multi-core processors

  SDK 4.0.x (Ice Cream Sandwich), 4.1/4.2 (Jelly Bean)
  Changes to the UI, Voice input, NFC

Android
History

Android II

  Android includes a set of C/C++ libraries used by various
components of the Android system. The capabilities of these
libraries are exposed to developers through the Android
application framework APIs.

  The core libraries include:
  System C library, a BSD-derived implementation of the

standard C system library (libc), adapted for embedded
Linux-based devices.

  Media Libraries based on PacketVideo’s OpenCORE.
  Surface Manager that manages access to the display

subsystem and seamlessly renders 2D and 3D graphic
layers from multiple applications.

  LibWebCore, a web browser engine which powers both
the Android browser and an embeddable web view.

  SGL, the underlying 2D graphics engine.
  3D libraries, an implementation based on OpenGL ES

1.0 APIs.
  FreeType, bitmap and vector font rendering.
  SQLite, a lightweight relational database engine available

to all applications through the framework API.

Android Fragmentation

  For example: 7 API levels in active use
starting from Android 1.6 to 3.0

  APIs are forward compatible
  Device features vary
  App must specify requirements

Application model

  Application components classes
  Activity: UI view
  Service: background component
  Content provider: shared app data
  Broadcast receiver: reacting to system

events

  Component-level garbage collection

Android SDKs

  Java SDK
  Native SDK

  Eclipse IDE for Linux, Mac, Windows
  Visual UI builder

  More information:
  developer.android.com/sdk/index.html

Android: Key Components
  AndroidManifest.xml. This XML document contains the

configuration that tells the system how the top-level
components will be processed.

  Activities. An activity is an object that has a life cycle and
performs some work. An activity can involve user interaction.
Typically one of the activities associated with an application is
the entry point for that application.

  Views. A view is an object that knows how to render itself to
the screen.

  Intents. An intent is a message object that represents an
intention to perform some action.
  In Android terminology, an application has an intent to view a

Web page, and generates an Intent instance in order to view the
Web page using a URL. The Android system then decides how to
implement the intent. In this case, a browser would be used to
load and display the Web page.

  Services. A service is code that runs in the background. The
service exposes methods for to components. Other
components bind to a service and then invoke methods
provided by using remote procedure calls.

  Notifications. A notification is a small icon that is visible in
the status bar. Users can interact with this icon to receive
information.

  ContentProviders. A ContentProvider provides access to
data on the device.

Manifest

  AndroidManifest.xml defines the app
  Activities and components
  Device features
  Intent filters, actions to associate with
  Permissions needed / required
  Minimum API support

Processes and Threads

  When the first of an application's
components needs to be run, Android
starts a Linux process for it with a single
thread of execution.

  Can spawn additional threads
  Thread class, Looper, Handler, ...

  RPC for interprocess communications
  Java-based IDL: AIDL

Home Contacts Phone Browser ...

Activity
Manager

Package
Manager

Window
Manager

Telephony
Manager

Resource
Manager

Content
Providers

View
System

Location
Manager

Notification
Manager

XMPP
Service

APPLICATION

APPLICATION FRAMEWORK

Core Libraries

Surface
Manager

Media
Framework SQLite

Open
 GLES FreeType WebKit

SGL SSL libc
Dalvik Virtual

Machine

LIBRARIES ANDROID RUNTIME

LINUX KERNEL
Flash Memory

Driver
Binder (IPC)

Driver
Bluetooth

Driver
Camera
Driver

Display
Driver

Audio
Drivers

Power
Management

WiFi
Driver

Keypad
Driver

USB
Driver

Activity states

  An activity has four main states:
  Active. An activity is active when it is in the foreground of

the screen and at the top of the activity stack.
  Paused. An activity is paused when it has lost focus, but

is still visible. A paused activity is alive, but can be
destroyed by the system if memory needs to be freed.

  Stopped. An activity is stopped when it is obscured by
another activity. The stopped activity retains its state, but
it is no longer visible and can be destroyed by the system
when memory is needed.

  Destroyed/Inactive.
  If an activity is paused or stopped, the system can

remove the activity from memory. This can happen in
two ways, the system can ask the application to finish
or simply destroy the process.

Activity starts

onCreate()

Activity is running

New Activity is started

Your Activity is no longer visible

Activity is shut down

onPause()

onResume()

onStart()

onStop()

onDestroy()

onRestart()

Your Activity
comes to the
foreground

Your Activity
comes to the
foreground

Other applications
need memory

Process is killed

User navigates
back to your

Activity

Media Framework	

  Android use OpenCore as core
component of Media framework

  OpenCore supports MP3, AAC, AAC+,
3GPP, MPEG-4 and JPEG, 	

Media Framework	

Media Framework	

  Example:
  MediaPlayer mp = new MediaPlayer();
  mp.setDataSource(PATH_TO_FILE);
  mp.prepare();
  mp.start();

Media Framework	

  OpenCore lib has a C/S Architecture.
  MediaPlayer invoke JNI to manipulate

client.
  The client request to the server to control

hardwares.

Media Framework	

Media Framework	

Activity Manager	

  Each user interface screen is
represented by an Activity class.

  Each activity has its own life cycle.
  Activity uses Intent object to jump

between them.	

Intent and Intent filters	

  Intent activates activities, services, and
broadcast receivers.

  Intent can be used in explicit way or
implicit way.

  The implicit way depends on parameters:
Action, Data(url and MIME type) ,
Category	

Content manager	

  Manage data
  Client+server architecture.
  Content Resolver provides API

interface for applications.
  Content Providers is the server

managing the DB tables and database
content with different application.

Content manager	
  URI identifies the data or the table

  A: Standard prefix indicating that the data is
controlled by a content provider.

  B: The authority part of the URI; it identifies the
content provider.

  C: The path that the content provider uses to
determine what kind of data is being requested.

  D: The ID of the specific record being requested.

Source:	
Google	

Security and permissions	

  Security between applications and the
system is enforced at the process level
through standard Linux facilities

  Inter-component communications
security enforced with a reference
monitor (in Android mw)
  Manifest file, intent permissions

  Application cannot disrupt other
applications, except by explicitly
declaring the permissions for it

  Each Android package is given its own
unique Linux user ID	

Android
Linux

Development Java, native code with JNI
and C/C++

Network scanning Yes

Network interface control Limited

Background processing Yes (services)

Energy and power monitoring and control Yes

Memory management Yes

Persistent storage Yes

Location information Yes

HTML 5 Yes, support depends on
version

SIP API support Limited

Open Source Yes

3rd party application installation Certificate, Android store

Level of fragmentation

Some fragmentation

Summary

iOS

  iOS is a mobile operating system developed by
Apple Inc. for their iPhone, iPod touch, and iPad
products.

  The OS is derived from Max OS X and uses the
Darwin foundation.

  Darwin is built around XNU, a hybrid kernel that
combines the Mach 3 microkernel, various
elements of Berkeley Software Distribution (BSD)
Unix, and an object-oriented device driver API (I/
O Kit).

iOS development

  The iPhone OS is based on four
abstraction layers, namely the Core OS
layer, the Core Services layer, the Media
layer, and the Cocoa Touch layer.

  Objective C and Cocoa Touch are used
by developers

  An universal application determines the
device type and then uses the available
features based on conditional
statements.

iPhone OS

  The iPhone OS’s user interface is based
on multi-touch gestures. Interface control
elements consist of sliders, switches,
and buttons.

  Interaction with the OS includes gestures
such as swiping, tapping, pinching, and
reverse pinching.

  Additionally, using internal
accelerometers, rotating the device on its
y-axis alters the screen orientation in
some applications.

GUI (“Aqua”)

Hardware

API

Classic Cocoa touch BSD
Quick-
time

Quartz OpenGL PrintCore ...
Application Services

Core Services
Core foundation Core services

non-GUI
API...

System utilities
Kernel (“xnu”)

File systems
Networking NKE

POSIX

1 / 0 kit Drivers

Carbon

Carbon
 core

Core OS (“Darwin”)

Versions

  iOS 1 Web apps
  iOS 2 introduced the App Store
  iOS 3 single tasking, new features
  iOS 4 multitasking, FaceTime

videoconferencing, iBooks, iAd, in-app
purchases (apps can run in the
background)

  iOS 5 cloud integration

iPhone OS 4

  The iPhone OS 4.0 was announced in April 2010
and it supports multitasking for 3rd party
applications.

  The key design principle is to offer APIs for
specific background operations in order to be able
to optimize overall system performance.

  For example VoIP applications will be able to
receive calls in the background.

  Third party push servers are supported for
sending notifications to applications.

iOS4 multitasking

  The new iPhone multitasking-specific
APIs includes
  support for background audio play
  VoIP
  location services
  task completion, and
  fast application switching

  If you know the task then you can
optimize scheduling

Application model

  Mac OS X model
  Traditional main() starts UI event loop
  View controller reacts to events
  View objects manage visible objects
  View controller unserializes views from a .nib

file (UI builder)
  All code is native
  Patterns

  Model-View-Controller
  Delegate

  Implement application specific logic

Structure

Data Model Objects
Todo item, calendar, …

UI application
Event loop

Application delegate
App events

Controller objects
A view controller
handles events

UIWindow

Views and UI
Objects
A view draws
content

Controller

Model

View

iPhone Events

Source: http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Art/app_interruptions.jpg

XCode

  Xcode is Apple’s IDE for iOS
development

  Interface Builder
  XML view definitions, .nib files

  Emulator for testing

  Pointer: developer.apple.com

Summary
iPhone OS

Development Objective-C

Network scanning No

Network interface control No

Background processing No (Yes for 4.0)

Energy and power monitoring and control Monitoring since 3.0

Memory management Yes

Persistent storage Yes

Location information Yes

HTML 5 Yes

SIP API support Limited

Open Source No

3rd party application installation Certificate, Apple
AppStore

Level of fragmentation

Minor fragmentation

Android
Linux

Blackberry OS
5.0

iPhone OS Java ME MIDP Kindle
SDK

MeeGo
Linux

HP WebOS Linux Symbian
Series 60

Windows
Mobile .NET and
Windows Phone

Development Java, native
code with JNI
and C/C++

Java MIDP,
Blackberry APIs

Objective-C Java ME Java,
Personal
Basis
Profile

C/C++, Qt
APIs, various

Applications with
Web tech. (HTML
5), C/C++

C++, Qt,
Python,
various

C# and .NET, various

Network
scanning

Yes Yes (hotspot API) No No No Yes Limited (Web
apps)

Limited Yes

Network
interface
control

Limited Limited (hotspot
API)

No No No Yes Limited (Web
apps)

Yes Yes

Background
processing

Yes (services) Yes No (Yes for 4.0) Yes (multi-
tasking support
in MIDP 3.0)

No Yes Yes Yes Yes, not supported
for third party
applications in WP7

Energy and
power
monitoring and
control

Yes Limited (battery
info)

Monitoring
since 3.0

No No Yes Yes (battery
status, inform
duration of
activity)

Yes Yes

Memory
management

Yes Yes (low-memory
events)

Yes Limited Limited Yes Yes (no for Web
apps)

Yes Yes

Persistent
storage

Yes Yes Yes Limited,
exension

Limited
secure
storage

Yes Yes (HTML 5
storage)

Yes Yes

Location
information

Yes Yes Yes Extension No Yes Yes Yes Yes

HTML 5 Yes, support
depends on
version

Yes, support
depends on
version

Yes N/A N/A Depends on
WebKit
version

Yes No (Widgets
and
Javascript
API)

No

SIP API
support

Limited No Limited Extension No Yes No Yes No

Open Source Yes No No No No Yes No (some parts
are Open Source)

Yes No

3rd party
application
installation

Certificate,
Android store

Certificate Certificate,
Apple AppStore

Certificate Kindle
DRM

Certificate Certificate Certificate Certificate, app store
(WP7)

Level of
fragmentation

Some
fragmentation

Minor
fragmentation

Minor
fragmentation

Fragmented Not
fragmented

Not
fragmented

Not fragmented Some
fragmentation

Some fragmentation

Discussion

  The current state is fragmented

  Difficult to achieve portability

  Certain patterns are pervasive (model
view control and others)

  Solutions?

Web Apps

  Emerging as an alternative to native applications

  Hybrid usage: Web content to native application
interfaces

  Web content can partially solved portability issues

  Survey: Android Programmers Shifting Toward
Web Apps
  CNet (03/20/12) Stephen Shankland
  http://news.cnet.com/8301-30685_3-57400136-264/survey-

android-programmers-shifting-toward-web-apps/

HTML5
  HTML 5 is the next version of HTML

  The first public working draft of the
specification available in January 2008 and
completion expected around 2012

  Improvements
  Web Socket API, advanced forms, offline

application API, and client-side persistent
storage (key/value and SQL).

  HTML 5 support divides the platforms.
  The iPhone platform has a very good support

for HTML 5
  Also Windows Phone and Android support it
  http://mobilehtml5.org/

JavaScript access

  The Open Mobile Terminal Platform
(OMTP) group defines requirements and
specifications that aim towards simpler
and more interoperable mobile APIs

  BONDI defines requirements governing
Device Capability access by JavaScript
APIs to promote interoperability and
security of implementations

  The 1.1 release of BONDI is compliant
with the W3C Widgets: Packaging and
Compliance specification

Operating System

Device Capability Access Control

JavaScript API and Access Control

Application Invocation, Network, Messaging,
Communication Log, Media Gallery, Media

Recording, Personal Information, Persistent Data,
Location, User Interaction, Device Status, System Events,

Policy Management, APIManagement, Extensions

JavaScript Extension

Web Engine (WebKit, ...)

Browser Widget User Agent

Website Widget

BONDI
code

BONDI Architecture

Source: http://www.developer.nokia.com/Community/Wiki/Cross_Platform_Mobile_Architecture

Libraries/frameworks for Portability

  Apache Cordova (former PhoneGap)
  Use JavaScript to access a native API, like geolocation,

camera, storage, etc. using a single API call irrespective of the
mobile platform

  Sench Touch
  An HTML5 framework and native api wrappers

  Xamarin
  Xamarin compiler bundles the .NET runtime and outputs a

native executable, packaged as an iOS or Android app

System bus
  An asynchronous system-wide event bus

is a basic solution for interconnecting
various on-device components

  There is no single standard for this.
  Android and Java ME use Java-specific

events (Android Intent filtering)
  MeeGo uses D-BUS
  Palm's WebOS W3C Events

  One particular trend is to utilize URI-
based conventions for naming system
resources and services.
  This is extensively used in Android, WebOS

and the BONDI architecture. Can be used for
iOS as well (URL handlers)

Summary
  Three current smartphone platforms

  iOS, Android, WP8

  Fragmentation is a current problem
  Device, standard, implementation

  Closed vs. Open platforms
  Trust in apps, API access, privileges

  Cross-platform development
  HTML5, native, or hybrid
  Middleware support
  Hybrid is a viable alternative

