
Mobile Middleware  
 
 
Applications and Service  
Case Studies 
 
 
 



Contents 

  Mobile Services 
  Overview 
  Widgets 
  CoAP / Internet of Things 
  Location-based services and maps 
  Push email 
  Facebook Chat 
  Mobile video 
  Advertising 

  Summary 



Introduction 

  Mobile software is a growing area 
  Billions of downloads from Apple AppStore 
  Development processes, tools, APIs are crucial for 

the ecosystem 
  Integration with Web resources 

  Key applications 
  Voice 
  Multimedia 
  Messaging 
  Web sites, mashups, services 
  Location-based services 

  Forthcoming features 
  Context-awareness, adaptability, smart spaces 



Mobile Service Development 

  The mobile landscape is fragmented 
  Heterogeneous device base 
  Many different wireless technologies 

  The situation is challenging for the 
developer 
  Many APIs 
  Many middleware platforms 
  APIs evolve over time 

  Current challenge of the industry pertains 
to improving the development processes 

  HTML5 and hybrid apps, cross-platform 
toolkits 



Mobile Services Overview 

Information 
Dynamic content 
•  News 
•  Weather 
... 

Reference content 
•  Phone books 
•  Catalogues 
•  Dictionaries 

Communication 
Messaging 
•  SMS 
•  email 
... 

Advertising 
•  Sponsored Alerts 
•  Mobile Promotion 
•  Permission Marketing 

Mobile Emergency 
 Service 
• Tracking 

Entertainment 
Games & 
Gambling 
•  Stand-alone Games 
•  Betting 

Audio 
•  Ringtones 
•  MP3 
  ... 

Video 
•  Photographs 
•  Video-Clips 

Transaction 
Tailing 
•  Auctions 
•  Sales 
•  Ticketing 

Finance 
•  Brokerage 
•  Banking 
... 

Payment 
•  Micro 
•  Macro 

Business Domain 

 
 

 
 

M-Workforce 
 
•  Calendar 
•  Email       
•  Groupware 

M-CRM 
•  Sales 
•  Service 

M-SCM 

Consumer Domain 

•  Fleet Management 
•  Tracking 

External 

Internal 

Modern apps combine these! 



Network centric mobile 
application types 

  Streaming Media  
  Challenges: high jitter, low throughput  
  buffering, layered encoding 
  Tradeoffs between energy / network utilization / buffer size 

  Mobile Commerce  
  Challenges: high latency, security  
  Adaptive design, minimized comms. 

  Pervasive Gaming  
  Challenges: latency variations, real-time requirements 
  CPU intensive 

  Web Browsing  
  Challenges: low throughput, high load 
  Caching, improved protocols (SPDY, …) 



Widgets 

  Widgets are lightweight Web applications / mobile apps 
  HTML, Cascading Style Sheets (CSS), RSS, 

Javascript, and AJAX 
  Differences exist in: 

  the packaging format 
  the security model 
  the APIs 

  WidSets is a simple service developed by Nokia that 
provides mobile users with information that is normally 
accessed via the Internet 
  WidSets is based on widgets that utilize RSS feeds to 

retrieve current information from the Web 
  Obsolete by now 

  Homescreen widgets in Android 



  Metadata, 
Configuration 

Presentation, 
   Behavior 

User Interface, 
Accessibility 

Scripting, 
Network 
Acces 

Packaging, 
Distribution, 
Deployment 

HTML or Proprietary XML  Configuration 
Document  

Pa
ck

ag
in

g 
Fo

rm
at

 &
 

D
ig

ita
l S

ig
na

tu
re

  

M
ed

ia
 T

yp
e 

 

XML HTTP Request  Widgets API  

XML ECMAScript  

R
es

ou
rc

es
  

(im
ag

es
, s

ou
nd

s)
  

CSS  

DOM  

HTTP + URI + Unicode   

Widget 
Resource Instantiated 

   Widget 

Widget User Agent 

W3C Widgets 



Android Widgets 
  To create your own widget, extend View or a subclass (typically 

RemoteView).  
  Java implementation file 

  This is the file that implements the behavior of the widget. 
BroadcastReceiver is used for updates.  

  XML definition file (AndroidManifest.xml) 
  An XML file in res/values/ that defines the XML element used 

to instantiate your widget, and the attributes that it supports. 
  Layout XML [optional] (AppWidgetProviderInfo)  

   An optional XML file that defines the layout of the widget and 
other UI related parameters.  

  Widget onReceive should finish within 5secs. Long-running 
activities can be implemented in a service that updates the 
widget. 



Internet of Things 
  M2M traffic solutions (security, healthcare, energy, …) 
  Cosm (Pachube) Web service for connecting sensor data 

  www.cosm.com 
  There gateway for home automation and monitoring 

  http://therecorporation.com/fi 
  Rymble By Symplio 

  http://www.rymble.com/  
  NEST learning thermostat 
  Withings products 

  http://www.withings.com/en/bodyscale 
  Karotz By Aldebaran Robotics 

  http://www.karotz.com/home  
  Green Goose 

  http://greengoose.com/  
  Google Q 
  And many emerging products based on 802.15.4, WiFi, RFID and NFC, and 

the power of the cloud (REST-based interfaces) 10 



CoAP Protocol 

  Constrained machine-to-machine (M2M) web protocol 
  HTTP for the Internet of Things 
  Follows the Representational State Transfer (REST) 

architecture 
  Asynchronous transaction support, reliable unicast and 

best-effort multicast 
  Basic proxy and caching capabilities 
  Low header overhead and parsing complexity 
  URI and content-type support 
  UDP binding (may use IPsec or DTLS) 
  Support for resource discovery 



CoAP and HTTP 

  Methods are very similar to HTTP methods 
  Resources are identified by URIs 
  Response codes are a subset of HTTP 

response codes 
  Options carry additional information (similar to 

HTTP header lines, but using a more compact 
encoding) 



CoAP Messaging 

  Messaging model 
  CON (confirmable), receiver ACK or RST 
  ACK, CON was OK, can include data 
  Reset Message (RST), problem with CON 
  Non-Confirmable (NON) 

   Simple stop-and-wait retransmission reliability with 
exponential back-off for "confirmable" messages. 

   Duplicate detection for both "confirmable" and "non-
confirmable” messages. 

  CoAP transactions provide 
  Reliable UDP based messaging 

  CoAP methods are similar to HTTP methods 
  GET, POST, PUT, DELETE 



Location-based Services I 

  Location-based services  
  GPS 

 24 satellites 20 km above the Earth 
 4 satellites are needed (at least 3) 

  A-GPS 
 Phone gets satellite information from 

the mobile network 
 Works indoors 
 Energy efficient (offloading) 

  Cell-id (one basestation, three 
basestations + known measurement 
point) 

  Indoor positioning 



Location-based Services II 

  Geocoding: to calculate a location’s latitude and 
longitude coordinates, including street addresses 
and intersections, street blocks, postal codes, … 

  Reverse geocoding: to get location information 
given latitude and longitude 

  Geotagging: to add map annotations 

  Applications 
  Friend finding and communities 
  Dynamic content services 
  Pedestrian and city use 
  Outdoor and satellite maps 
  Alerts for traffic, POI, safety, speed alerts 
  Collaborative location-aware sensing 



Example: Android API 

  LocationProvider class (can use Criteria to select a 
suitable provider) 
  network: uses 3G/WiFi for positioning, works indoors 
  gps: uses GPS for outdoor positioning 
  Passive:  allows application to get passive location 

information based on other apps 
  Can use LocationProvider to figure out if a specific 

provider is enabled (and then can prompt user to enable 
it by using an intent). 

  Permissions: ACCESS_FINE_LOCATION, 
ACCESS_COARSE_LOCATION, INTERNET 



Remote 
Facade 

Map 
Web 

Services 

Addresses 

Coordinates 
Coordinates 

Routes 
Route Segment 

Direction 
Route Segment 

Highlighted map 

Fast fixed-network Last hop 
wireless network 

Addresses 

Directions 
and maps 

Mobile 
Device 



Email 

  Simple Mail Transfer Protocol (SMTP) 
protocol for sending messages 

  The Internet Message Access Protocol 
(IMAP) supports polling and notifications 

  The server sends a notification to a client 
to inform that there is data available 

  This allows flexible retrieval of messages 
and gives the client the control of 
whether or not to download new 
message data. 



Mobile Push Email 

  BlackBerry 
  Microsoft DirectPush 
  Apple iPhone OS 3.0 

  Implementation 
  Custom server in access network 
  IMAP IDLE 
  Long-lived client-initiated connection 
  SIP (in the future?)  



BlackBerry 

  Blackberry devices have become popular among 
business users in part because they support 
desktop style email usage experience with 
almost instant delivery of messages 

  Blackberry devices utilize a custom enterprise 
server that is connected to the traditional e-mail 
system 

  The enterprise server monitors the e-mail server 
and then can pull new messages and send them 
to the Blackberry device using push over the 
wireless network 



DirectPush 

  Microsoft introduced the DirectPush 
Technology with Windows Mobile 6 

  Mobile devices that support DirectPush 
utilize a long-lived HTTPS request to the 
Exchange server 

  The Exchange server monitors activity 
on the users mailbox 

  Details 
  http://technet.microsoft.com/en-us/library/

cc182260.aspx 



Source: http://technet.microsoft.com/en-us/library/cc182270.aspx 

Can now increase interval, one 
previous RTT with the same 
value 



Hearbeat settings 

  The heartbeat starts at the default rate.  
  The direct push algorithm on the device then 

dynamically adjusts the heartbeat interval to 
maintain the maximum time between heartbeats 
without exceeding the time-out value.  

  The rate adjustment is based on the following 
configuration parameter settings (increments are 
maximum, can be smaller set by tuning 
component). 
  HeartbeatDefault (480s=8min) 
  HeartbeatIncrement (300s=5min) 
  HeartbeatMin (480s=8min) 
  HeartbeatMax (1680s=28min) 



Why adaptive? 

  Two different things: 
  Network timeout 
  Server data available rate 

  Too large value à network timeout 
breaks connection (should be below 
network timeout) 

  Too small value à too many polling 
operations 

  Polling operations delay data retrieval 
  Thus dynamic setting of the polling 

taking the network/server into account 



IMAP IDLE 

  This solution relies on the existing IDLE 
(RFC 2177) command to provide instant 
e-mail notification on the client device 

  The IDLE command is often used to 
signal the ability of a client to process 
notifications sent outside of a running 
command 

  This can be used to provide a similar 
user experience to push 



Apple Push Notification 
Service 

  APNS usage involves the following steps:  
1.  Service or application developer connects to the 

APNS system using a unique SSL certificate. The 
certificate is obtained from Apple with the developer 
identifier and application identifier.  

2.  Applications obtain deviceTokens that are then 
given to services 

3.  The APNS is used to send one or more messages 
to mobile devices. The push operation is application 
and device specific and a unique deviceToken is 
needed for each destination device.  

4.  The service or application disconnects from APNS.  



Facebook Chat 

  Web-based app that interacts with the 
backend 

  Channel clusters, each cluster is 
responsible for a subset of users 

  Incoming message sent to the channel 
cluster responsible for the destination 

  Regular AJAX for sending messages 
  AJAX polling for presence updates 
  AJAX long-polling for messages 



System details 

  Engineering challenges 
  Delivery time minimized with AJAX long-

polling 
  Long-lived connection management 
  Status updates (transitions between states 

generate a lot of traffic) 

  Custom web server written in Erlang 



Facebook Chat Architecture 

APPLICATIONS 329

web tier

browser

browser Web
servers

Web
servers

chatlogger

presence

Channel

Channel

Channel

Channel

channel clusters

Pages, message
history, online
contact list

Messages
(Ajax)

Messages
(long poll)

Log writes

Log reads

Online contact list

Channel 
creation,
messages

Aggregate
online
contact list

Figure 12.5 Facebook Chat architecture.



Facebook Messenger 

  Social application available on mobile 
devices 

  Chat and presence system that 
integrates with the backend 

  Uses MQTT instead of AJAX 

  MQ Telemetry Transport (MQTT) is a 
lightweight topic-based pub/sub protocol. 



Mobile Advertisement 
Example 
  The central entities are the end user, the trusted 

party,  the operator, and the provider 
  The trusted party manages end user profiles and 

anonymizes user profiles and other data so that 
other parties cannot determine user preferences 

  The operator is responsible for running the core 
system that stores orders 

  When an order and offer match, a notification is 
generated towards the end user 

  The provider is the advertiser and responsible for 
the offers and providing advertisement 
information that can be then delivered to end 
users.  



Anonymizer 

Resolver 

Trusted party 

Private and 
Public context 

End user 

Publishing and 
rendering 

Provide adv.  
Offers 

Provider 

Notifications 

Orders 

Core System 
Notification  

profiles 

Orders Offers 

 
Administration 

Statistics 
 

Operator 

Matches 

Public context 
(weather, time, …) 

Offers 

Statistics 

Adv. Data 

Adv. information 

Resolver requests notifications 



Mobile Video Delivery Techniques 
  Server Controlled Techniques 

  Bitrate Throttling (send with factor x of encoding rate) 
  Fast Caching (use full bandwidth and large receive buffer) 

  Client Controlled Techniques 
  Bitrate Streaming (at encoding rate) 
  ON-OFF using a persistent TCP connection  
  ON-OFF using multiple TCP connections 

  Dynamic Adaptive Streaming over HTTP (DASH) 
  Adapt the quality of the video according the available bandwidth 

between a client and the server 
  Similar to HTTP Live Streaming (Apple) 

  YouTube app uses a selection of these (Throttlng on iOS and Android, 
Bitrate on N9, ON-OFF with Android(HTML5, Fast caching on Lumia) 

  Details: “M. Hoque et al. Dissecting Mobile Video Services: An Energy 
Consumption Perspective. In WoWMoM, June 2013”. 



Patterns for Mobile Computing 

  Three categories 
  distribution 
  resource management and synchronization 
  communications 

  Distribution patterns pertain to how 
resources are distributed and accessed in 
the environment. 
  remote facade, data transfer object, remote 

proxy, and observer 
  Resource management and synchronization 

  session token, caching, eager acquisition, 
lazy acquisition, synchronization, rendezvous, 
and state transfer 

  Communications  
  connection factory, client-initiated 

connections, multiplexed communication 



Revisiting Patterns 1/4  

  Widgets 
  Widgets can employ a number of 

patterns, typically Remote Proxy and 
Broker are pertinent. 

  Location Awareness.  
  Rendezvous and Synchronization are 

crucial. This can be achieved using a 
Remote Proxy pattern and the 
Connection patterns. The Remote 
Facade pattern is often applied to 
minimize the number of remote calls 
needed. Eager Acquisition can be used to 
anticipate future information needs. 



Revisiting Patterns 3/4 

  Generic Mobile push. This application case 
is similar to Mobile Server, Location 
Awareness, Mobile Advertisement, and 
Mobile Video. 

  Mobile Push Email. Reachability is vital also 
in this application scenario. This is achieved 
using the Client-initiated Connection, 
Remote Proxy, and Rendezvous patterns. 

  Facebook Chat. Multi-tier, client-initiated 
connection, Multi-tier, Lazy synchronization 
(contacts), Rendezvous, and Remote Proxy. 



Revisiting Patterns 2/4 

  Mobile Advertisement.  
  This application requires a combination of 

patterns, namely Client-initiated connections, 
Rendezvous, Synchronization, Caching, 
Remote Proxy, and Broker.  

  The connections ensure reachability of the 
mobile terminals and allow to the 
advertisement system to synchronize 
advertisements and impressions with the 
mobile device (if they are stored on board).  

  Rendezvous is needed to keep track of the 
current location of the device.  

  Remote proxy is needed to handle the 
connections. The Broker is used to provide 
indirection between different components in 
the system. 



Revisiting Patterns 4/4 

  Mobile Video. This application can utilize the 
Client-initiated Connection and Multiplexed 
Connection for enabling continuous media 
delivery to the client.  
  Video-on-demand can be Cached, and 

video stream buffering can be seen a 
variant of the Eager Acquisition pattern. 

  Mobile Server.  
  Reachability is vital in this application and 

it is achieved using the Client-initiated 
Connection, Remote Proxy, and 
Rendezvous patterns. Caching can be 
used at the Remote Proxy to improve 
performance. 

 



Recent Trends 



Topics 
  App stores  

  Apple, Nokia, Android, WP8, … 
  In-app purchases 
  Searching, purchasing, advertising, … 

  How to do software updates 
  How to support community buildup 
  Push notifications 

  Dedicated push servers 
  Control plane  
  Triggers 

  Inter-app communication is still in early phases 
  Difficult to build on local communication context 

(some games do this today) 



Sensors 

  The number of sensors will increase 
dramatically 

  Innovative new applications 
  Pulse monitor, augmented reality, … 

  Plug-in sensors and devices 

  Crowdsourcing sensor data and 
processing? 

  Decentralized processing? 



Challenges 

  Cloud integration 
  Event-based program flow 
  Content storage, search, and sync 
  APIs and interoperability 

  Mitigating fragmentation 

  Energy efficiency 



Conclusions 

  Mobile software is mainstream 
  Appstores 
  Better tools and development environments 
  Integration with Web resources 
  Integration with other apps 
  Integration with sensors! 

  Challenges include 
  Fragmentation in its many forms 

  Devices, standards, implementations 
  Access to mobile APIs 
  Practical ubicomp deployment 
  Adaptation 


