
Mobile Middleware

Applications and Service
Case Studies

Contents

  Mobile Services
  Overview
  Widgets
  CoAP / Internet of Things
  Location-based services and maps
  Push email
  Facebook Chat
  Mobile video
  Advertising

  Summary

Introduction

  Mobile software is a growing area
  Billions of downloads from Apple AppStore
  Development processes, tools, APIs are crucial for

the ecosystem
  Integration with Web resources

  Key applications
  Voice
  Multimedia
  Messaging
  Web sites, mashups, services
  Location-based services

  Forthcoming features
  Context-awareness, adaptability, smart spaces

Mobile Service Development

  The mobile landscape is fragmented
  Heterogeneous device base
  Many different wireless technologies

  The situation is challenging for the
developer
  Many APIs
  Many middleware platforms
  APIs evolve over time

  Current challenge of the industry pertains
to improving the development processes

  HTML5 and hybrid apps, cross-platform
toolkits

Mobile Services Overview

Information
Dynamic content
•  News
•  Weather
...

Reference content
•  Phone books
•  Catalogues
•  Dictionaries

Communication
Messaging
•  SMS
•  email
...

Advertising
•  Sponsored Alerts
•  Mobile Promotion
•  Permission Marketing

Mobile Emergency
 Service
• Tracking

Entertainment
Games &
Gambling
•  Stand-alone Games
•  Betting

Audio
•  Ringtones
•  MP3
 ...

Video
•  Photographs
•  Video-Clips

Transaction
Tailing
•  Auctions
•  Sales
•  Ticketing

Finance
•  Brokerage
•  Banking
...

Payment
•  Micro
•  Macro

Business Domain

M-Workforce

•  Calendar
•  Email
•  Groupware

M-CRM
•  Sales
•  Service

M-SCM

Consumer Domain

•  Fleet Management
•  Tracking

External

Internal

Modern apps combine these!

Network centric mobile
application types

  Streaming Media
  Challenges: high jitter, low throughput
  buffering, layered encoding
  Tradeoffs between energy / network utilization / buffer size

  Mobile Commerce
  Challenges: high latency, security
  Adaptive design, minimized comms.

  Pervasive Gaming
  Challenges: latency variations, real-time requirements
  CPU intensive

  Web Browsing
  Challenges: low throughput, high load
  Caching, improved protocols (SPDY, …)

Widgets

  Widgets are lightweight Web applications / mobile apps
  HTML, Cascading Style Sheets (CSS), RSS,

Javascript, and AJAX
  Differences exist in:

  the packaging format
  the security model
  the APIs

  WidSets is a simple service developed by Nokia that
provides mobile users with information that is normally
accessed via the Internet
  WidSets is based on widgets that utilize RSS feeds to

retrieve current information from the Web
  Obsolete by now

  Homescreen widgets in Android

 Metadata,
Configuration

Presentation,
 Behavior

User Interface,
Accessibility

Scripting,
Network
Acces

Packaging,
Distribution,
Deployment

HTML or Proprietary XML Configuration
Document

Pa
ck

ag
in

g
Fo

rm
at

 &

D
ig

ita
l S

ig
na

tu
re

M
ed

ia
 T

yp
e

XML HTTP Request Widgets API

XML ECMAScript

R
es

ou
rc

es

(im
ag

es
, s

ou
nd

s)

CSS

DOM

HTTP + URI + Unicode

Widget
Resource Instantiated

 Widget

Widget User Agent

W3C Widgets

Android Widgets
  To create your own widget, extend View or a subclass (typically

RemoteView).
  Java implementation file

  This is the file that implements the behavior of the widget.
BroadcastReceiver is used for updates.

  XML definition file (AndroidManifest.xml)
  An XML file in res/values/ that defines the XML element used

to instantiate your widget, and the attributes that it supports.
  Layout XML [optional] (AppWidgetProviderInfo)

  An optional XML file that defines the layout of the widget and
other UI related parameters.

  Widget onReceive should finish within 5secs. Long-running
activities can be implemented in a service that updates the
widget.

Internet of Things
  M2M traffic solutions (security, healthcare, energy, …)
  Cosm (Pachube) Web service for connecting sensor data

  www.cosm.com
  There gateway for home automation and monitoring

  http://therecorporation.com/fi
  Rymble By Symplio

  http://www.rymble.com/
  NEST learning thermostat
  Withings products

  http://www.withings.com/en/bodyscale
  Karotz By Aldebaran Robotics

  http://www.karotz.com/home
  Green Goose

  http://greengoose.com/
  Google Q
  And many emerging products based on 802.15.4, WiFi, RFID and NFC, and

the power of the cloud (REST-based interfaces) 10

CoAP Protocol

  Constrained machine-to-machine (M2M) web protocol
  HTTP for the Internet of Things
  Follows the Representational State Transfer (REST)

architecture
  Asynchronous transaction support, reliable unicast and

best-effort multicast
  Basic proxy and caching capabilities
  Low header overhead and parsing complexity
  URI and content-type support
  UDP binding (may use IPsec or DTLS)
  Support for resource discovery

CoAP and HTTP

  Methods are very similar to HTTP methods
  Resources are identified by URIs
  Response codes are a subset of HTTP

response codes
  Options carry additional information (similar to

HTTP header lines, but using a more compact
encoding)

CoAP Messaging

  Messaging model
  CON (confirmable), receiver ACK or RST
  ACK, CON was OK, can include data
  Reset Message (RST), problem with CON
  Non-Confirmable (NON)

  Simple stop-and-wait retransmission reliability with
exponential back-off for "confirmable" messages.

  Duplicate detection for both "confirmable" and "non-
confirmable” messages.

  CoAP transactions provide
  Reliable UDP based messaging

  CoAP methods are similar to HTTP methods
  GET, POST, PUT, DELETE

Location-based Services I

  Location-based services
  GPS

 24 satellites 20 km above the Earth
 4 satellites are needed (at least 3)

  A-GPS
 Phone gets satellite information from

the mobile network
 Works indoors
 Energy efficient (offloading)

  Cell-id (one basestation, three
basestations + known measurement
point)

  Indoor positioning

Location-based Services II

  Geocoding: to calculate a location’s latitude and
longitude coordinates, including street addresses
and intersections, street blocks, postal codes, …

  Reverse geocoding: to get location information
given latitude and longitude

  Geotagging: to add map annotations

  Applications
  Friend finding and communities
  Dynamic content services
  Pedestrian and city use
  Outdoor and satellite maps
  Alerts for traffic, POI, safety, speed alerts
  Collaborative location-aware sensing

Example: Android API

  LocationProvider class (can use Criteria to select a
suitable provider)
  network: uses 3G/WiFi for positioning, works indoors
  gps: uses GPS for outdoor positioning
  Passive: allows application to get passive location

information based on other apps
  Can use LocationProvider to figure out if a specific

provider is enabled (and then can prompt user to enable
it by using an intent).

  Permissions: ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION, INTERNET

Remote
Facade

Map
Web

Services

Addresses

Coordinates
Coordinates

Routes
Route Segment

Direction
Route Segment

Highlighted map

Fast fixed-network Last hop
wireless network

Addresses

Directions
and maps

Mobile
Device

Email

  Simple Mail Transfer Protocol (SMTP)
protocol for sending messages

  The Internet Message Access Protocol
(IMAP) supports polling and notifications

  The server sends a notification to a client
to inform that there is data available

  This allows flexible retrieval of messages
and gives the client the control of
whether or not to download new
message data.

Mobile Push Email

  BlackBerry
  Microsoft DirectPush
  Apple iPhone OS 3.0

  Implementation
  Custom server in access network
  IMAP IDLE
  Long-lived client-initiated connection
  SIP (in the future?)

BlackBerry

  Blackberry devices have become popular among
business users in part because they support
desktop style email usage experience with
almost instant delivery of messages

  Blackberry devices utilize a custom enterprise
server that is connected to the traditional e-mail
system

  The enterprise server monitors the e-mail server
and then can pull new messages and send them
to the Blackberry device using push over the
wireless network

DirectPush

  Microsoft introduced the DirectPush
Technology with Windows Mobile 6

  Mobile devices that support DirectPush
utilize a long-lived HTTPS request to the
Exchange server

  The Exchange server monitors activity
on the users mailbox

  Details
  http://technet.microsoft.com/en-us/library/

cc182260.aspx

Source: http://technet.microsoft.com/en-us/library/cc182270.aspx

Can now increase interval, one
previous RTT with the same
value

Hearbeat settings

  The heartbeat starts at the default rate.
  The direct push algorithm on the device then

dynamically adjusts the heartbeat interval to
maintain the maximum time between heartbeats
without exceeding the time-out value.

  The rate adjustment is based on the following
configuration parameter settings (increments are
maximum, can be smaller set by tuning
component).
  HeartbeatDefault (480s=8min)
  HeartbeatIncrement (300s=5min)
  HeartbeatMin (480s=8min)
  HeartbeatMax (1680s=28min)

Why adaptive?

  Two different things:
  Network timeout
  Server data available rate

  Too large value à network timeout
breaks connection (should be below
network timeout)

  Too small value à too many polling
operations

  Polling operations delay data retrieval
  Thus dynamic setting of the polling

taking the network/server into account

IMAP IDLE

  This solution relies on the existing IDLE
(RFC 2177) command to provide instant
e-mail notification on the client device

  The IDLE command is often used to
signal the ability of a client to process
notifications sent outside of a running
command

  This can be used to provide a similar
user experience to push

Apple Push Notification
Service

  APNS usage involves the following steps:
1.  Service or application developer connects to the

APNS system using a unique SSL certificate. The
certificate is obtained from Apple with the developer
identifier and application identifier.

2.  Applications obtain deviceTokens that are then
given to services

3.  The APNS is used to send one or more messages
to mobile devices. The push operation is application
and device specific and a unique deviceToken is
needed for each destination device.

4.  The service or application disconnects from APNS.

Facebook Chat

  Web-based app that interacts with the
backend

  Channel clusters, each cluster is
responsible for a subset of users

  Incoming message sent to the channel
cluster responsible for the destination

  Regular AJAX for sending messages
  AJAX polling for presence updates
  AJAX long-polling for messages

System details

  Engineering challenges
  Delivery time minimized with AJAX long-

polling
  Long-lived connection management
  Status updates (transitions between states

generate a lot of traffic)

  Custom web server written in Erlang

Facebook Chat Architecture

APPLICATIONS 329

web tier

browser

browser Web
servers

Web
servers

chatlogger

presence

Channel

Channel

Channel

Channel

channel clusters

Pages, message
history, online
contact list

Messages
(Ajax)

Messages
(long poll)

Log writes

Log reads

Online contact list

Channel
creation,
messages

Aggregate
online
contact list

Figure 12.5 Facebook Chat architecture.

Facebook Messenger

  Social application available on mobile
devices

  Chat and presence system that
integrates with the backend

  Uses MQTT instead of AJAX

  MQ Telemetry Transport (MQTT) is a
lightweight topic-based pub/sub protocol.

Mobile Advertisement
Example
  The central entities are the end user, the trusted

party, the operator, and the provider
  The trusted party manages end user profiles and

anonymizes user profiles and other data so that
other parties cannot determine user preferences

  The operator is responsible for running the core
system that stores orders

  When an order and offer match, a notification is
generated towards the end user

  The provider is the advertiser and responsible for
the offers and providing advertisement
information that can be then delivered to end
users.

Anonymizer

Resolver

Trusted party

Private and
Public context

End user

Publishing and
rendering

Provide adv.
Offers

Provider

Notifications

Orders

Core System
Notification

profiles

Orders Offers

Administration

Statistics

Operator

Matches

Public context
(weather, time, …)

Offers

Statistics

Adv. Data

Adv. information

Resolver requests notifications

Mobile Video Delivery Techniques
  Server Controlled Techniques

  Bitrate Throttling (send with factor x of encoding rate)
  Fast Caching (use full bandwidth and large receive buffer)

  Client Controlled Techniques
  Bitrate Streaming (at encoding rate)
  ON-OFF using a persistent TCP connection
  ON-OFF using multiple TCP connections

  Dynamic Adaptive Streaming over HTTP (DASH)
  Adapt the quality of the video according the available bandwidth

between a client and the server
  Similar to HTTP Live Streaming (Apple)

  YouTube app uses a selection of these (Throttlng on iOS and Android,
Bitrate on N9, ON-OFF with Android(HTML5, Fast caching on Lumia)

  Details: “M. Hoque et al. Dissecting Mobile Video Services: An Energy
Consumption Perspective. In WoWMoM, June 2013”.

Patterns for Mobile Computing

  Three categories
  distribution
  resource management and synchronization
  communications

  Distribution patterns pertain to how
resources are distributed and accessed in
the environment.
  remote facade, data transfer object, remote

proxy, and observer
  Resource management and synchronization

  session token, caching, eager acquisition,
lazy acquisition, synchronization, rendezvous,
and state transfer

  Communications
  connection factory, client-initiated

connections, multiplexed communication

Revisiting Patterns 1/4

  Widgets
  Widgets can employ a number of

patterns, typically Remote Proxy and
Broker are pertinent.

  Location Awareness.
  Rendezvous and Synchronization are

crucial. This can be achieved using a
Remote Proxy pattern and the
Connection patterns. The Remote
Facade pattern is often applied to
minimize the number of remote calls
needed. Eager Acquisition can be used to
anticipate future information needs.

Revisiting Patterns 3/4

  Generic Mobile push. This application case
is similar to Mobile Server, Location
Awareness, Mobile Advertisement, and
Mobile Video.

  Mobile Push Email. Reachability is vital also
in this application scenario. This is achieved
using the Client-initiated Connection,
Remote Proxy, and Rendezvous patterns.

  Facebook Chat. Multi-tier, client-initiated
connection, Multi-tier, Lazy synchronization
(contacts), Rendezvous, and Remote Proxy.

Revisiting Patterns 2/4

  Mobile Advertisement.
  This application requires a combination of

patterns, namely Client-initiated connections,
Rendezvous, Synchronization, Caching,
Remote Proxy, and Broker.

  The connections ensure reachability of the
mobile terminals and allow to the
advertisement system to synchronize
advertisements and impressions with the
mobile device (if they are stored on board).

  Rendezvous is needed to keep track of the
current location of the device.

  Remote proxy is needed to handle the
connections. The Broker is used to provide
indirection between different components in
the system.

Revisiting Patterns 4/4

  Mobile Video. This application can utilize the
Client-initiated Connection and Multiplexed
Connection for enabling continuous media
delivery to the client.
  Video-on-demand can be Cached, and

video stream buffering can be seen a
variant of the Eager Acquisition pattern.

  Mobile Server.
  Reachability is vital in this application and

it is achieved using the Client-initiated
Connection, Remote Proxy, and
Rendezvous patterns. Caching can be
used at the Remote Proxy to improve
performance.

Recent Trends

Topics
  App stores

  Apple, Nokia, Android, WP8, …
  In-app purchases
  Searching, purchasing, advertising, …

  How to do software updates
  How to support community buildup
  Push notifications

  Dedicated push servers
  Control plane
  Triggers

  Inter-app communication is still in early phases
  Difficult to build on local communication context

(some games do this today)

Sensors

  The number of sensors will increase
dramatically

  Innovative new applications
  Pulse monitor, augmented reality, …

  Plug-in sensors and devices

  Crowdsourcing sensor data and
processing?

  Decentralized processing?

Challenges

  Cloud integration
  Event-based program flow
  Content storage, search, and sync
  APIs and interoperability

  Mitigating fragmentation

  Energy efficiency

Conclusions

  Mobile software is mainstream
  Appstores
  Better tools and development environments
  Integration with Web resources
  Integration with other apps
  Integration with sensors!

  Challenges include
  Fragmentation in its many forms

  Devices, standards, implementations
  Access to mobile APIs
  Practical ubicomp deployment
  Adaptation

