
Mobile Middleware

Principles and Patterns

Contents

  Overview
  Principles
  Patterns
  Mobile patterns
  Examples

Principles

  A principle signifies strong belief in a
certain state or property of a subject.

  Principles support the formation of a rule
or a norm by observing the subject.

  Principles have a form of minimality
character, because they cannot be
further divided.

  A rule or a norm can be reduced to a
principle, but principles are not reducible.

Patterns

  Design patterns are software engineering designs that
have been observed to work well

  Patterns are found in different contexts, they provide a
solution for a well-defined

  problem area, and digress the various dimensions of
the problem

  Patterns are classified into different groups based on
their level of abstraction.
  Architectural patterns summarize good architectural

designs
  Design patterns capture the essence of medium level

language independent, design strategies in object-
oriented design

  Idioms represent programming-language-level aspects of
good solutions

Architecture and platforms

  An architecture is a guided by principles and
grounded on architectural patterns. An
architecture consists of components, and rules
and constraints that govern the relationships of
the components

  A platform is a concrete realization of a
middleware architecture

  A protocol stack is a concrete realization of a set
of protocols and an architectural framework how
to use them in combination, typically using a
stack pattern, although other kinds of
organizations are also possible

Patterns

  Patterns are typically defined in terms of
their motivation, underlying problem,
structure, consequences, implementations,
and known users

  Pattern that are applicable in a particular
domain can be collected together. This kind
of pattern collection is often called pattern
language

Patterns continued
  The following table presents important information

used to define patterns:
  Pattern name: An informative name that uniquely

identifies the pattern
  Intent: Goals of the pattern and the reason for

utilizing it
  Motivation (Forces): A short problem statement

that is presented using a scenario
  Applicability: Describes the environments and

contexts in which the pattern can be applied
  Structure: Describes the structure of the pattern

using different graphical representations
  Collaboration: Describes how the various

elements, namely classes and objects, interact in
the pattern

  Consequences: Describes the results that can be
expected from using the pattern

  Implementation: Describes an implementation of
the pattern

  Known Uses and Related Patterns: Examples of
how the pattern has been applied in real systems

Principles

  Internet
  Web
  Service-oriented Architecture
  Security
  Mobile computing

Internet Principles

  End-to-End Principle
  In its original expression placed the maintenance of state

and overall intelligence at the edges, and assumed the
Internet that connected the edges retained no state and
concentrated on efficiency and simplicity.

  Today’s real-world needs for firewalls, NATs,Web
content caches have essentially modified this principle.

  Robustness Principle
  Be conservative in what you do, be liberal in what you

accept from others.
  This principle has been attributed to Jon Postel, editor of

the RFC 793 (Transmission Control Protocol).
  The principle suggests that Internet software developers

carefully write software that adheres closely to extant
RFCs but accept and parse input from clients that might
not be consistent with those RFCs.

Web Principles

  The principles of the Web follow those of the
underlying TCP/IP stack.

  Principles such as simplicity and modularity
are at the very base of software engineering;
decentralization and robustness are the
foundational characteristics of the Internet and
Web.

  Web principles are about supporting flexible
publishing of resources on the Internet and then
linking these resources together. In the context of
data publishing, data representation and
transformations are crucial.

  The principle of applying the least powerful
language to do a particular job

  HTTP, URL, HTML, XML

REST Principles

  Representational State Transfer (REST)
  The principles behind REST are the following:

  Application state and functionality are divided into
resources

  Every resource is uniquely addressable using a
universal syntax for use in hypermedia links

  All resources share a uniform interface for the
transfer of state between client and resource,
consisting of a constrained set of well-defined
operations, a constrained set of content types,
optionally supporting code on demand

  The defining features of REST are: client-server,
stateless, cacheable, and layered

SOA Principles

  Service Oriented Architecture (SOA) is a
software architecture where functionality is
structured around business processes and
realized as interoperable services

  Reuse, granularity, modularity, composability,
componentization, and interoperability

  Compliance to standards (both common and
industry-specific)

  Services identification and categorization,
provisioning and delivery, and monitoring and
tracking

Security Principles

  The commonly agreed security aspects
are the following:
  Privacy
  Integrity
  Authentication
  Authorization
  Accountability
  Availability

W3C Guiding Privacy Principles

  The W3C Platform for Privacy Protections (P3P) working
group has established the following privacy guiding
principles:
  Notice and Communication. Service providers

should provide timely and effective notices of their
information policies and practices. User agents should
provide effective tools for users to access these
notices and make decisions based on them

  Choice & Control. Users should be given the ability to
make meaningful choices about the gathering,
utilization, and disclosure of personal information

  Fairness&Integrity. Users should retain control over
their personal information

  Confidentiality. Users’ personal information should
always be protected with reasonable security
measures taking into account the sensitivity of the
information and required privacy level

Mobile Principles: SIP

  Proxies are for routing
  Relegation of call state to endpoints
  Endpoint fate sharing,

  Application fails when the endpoints fail
  The usage of dialog models and not call models
  Component based design
  Logical roles
  Internet-based design
  Generality over efficiency
  Separation of signaling and media.

Architectural patterns I

  Layers. A multilayered software architecture
is using different layers for allocating the
responsibilities of an application

  Client-Server. The client-server pattern is
the most frequent pattern in distributed
computing, in which clients utilize resources
and services provided by servers

  Peer-to-peer. The peer-to-peer pattern is
emerging communications model, in which
each peer in the network has both client and
server roles

  Pipeline (or pipes and filters). A pipeline
consists of a chain of processing elements
arranged so that the output of each element
is the input of the next

Architectural Patterns II

  Multitier. A multitier architecture is a client-
server architecture in which an application is
executed by more than one distinct software
agent

  Blackboard system. In this pattern, a
common knowledge base, the ”blackboard”,
is iteratively updated by a diverse group of
specialist knowledge sources, starting with a
problem specification and ending with a
solution

  Publish/Subscribe: Event-channel and
Notifier

Architectural patterns for
Mobile Computing
  Model-View-Control (MVC) is both an

architectural pattern and a design pattern,
depending where it is used

  Broker, which introduces a broker
component to achieve decoupling of clients
and servers

  Microkernel. This pattern provides the
minimal functional core of a system, the
microkernel, which is separated from
extended functionality. The external
functionality can be plugged in the
microkernel through specific interfaces

  Active Object. The Active Object pattern
provides a support for asynchronous
processing by encapsulating the service
request and service completion response

Model-View-Control

  The pattern divides the application into three
parts
  the controllers handling user input
  the model providing the core functionality
  the views displaying the information to the user

  The pattern ensures that the user interface is
formed by the view and the controller is
consistent with the model

  The pattern also specifies the change-
propagation mechanism
  Views and Controllers register with the Model to

receive notifications about changes in the
structure

  When the state of the Model changes, the
registered Views and Controllers are notified

  Used in Symbian OS and many other systems

Observer

View Controller

Model

Update observer

Attach model
Get data from model

Update model

Broker

  This pattern introduces a broker component to
achieve decoupling of clients and servers

  Servers register with the broker, and make their
services available to clients through method
interfaces provided by the broker

  Clients access the functionality of servers by
sending requests via the broker

  The tasks of the broker include
  locating the appropriate server
  forwarding the request to the server
  transmitting results and exceptions back to the

client

MicroKernel
  This pattern may be applied in the context of complex software systems

serving as a platform for other software applications
  The desired characteristics for such systems include extensibility,

adaptability, and interoperability
  A small core that is extensible with pluggable components

Internal ServerMicrokernelExternal Server

Adapter Client

Calls Microkernel Microkernel calls

Calls

Calls

Active Object
  The Active Object pattern provides support for asynchronous processing
  The pattern works by encapsulating and handling asynchronous service

requests and service completion responses
  The pattern allows the client to be notified about the task’s completion and

perform other tasks asynchronously with the server
  Active Object runs in a same thread as the application. Helps to eliminate

overhead in context-switching between threads
  The liability of Active Object is the fact that it is non-preemptive

CActiveScheduler ActiveObject

CActive

AsynchronousServiceProvider

Status flags

Status
Decide resumed

object

Patterns for Mobile Computing

  Three categories
  distribution
  resource management and synchronization
  communications

  Distribution patterns pertain to how
resources are distributed and accessed in
the environment.
  remote facade, data transfer object, remote

proxy, and observer
  Resource management and synchronization

  session token, caching, eager acquisition,
lazy acquisition, synchronization, rendezvous,
and state transfer

  Communications
  connection factory, client-initiated

connections, multiplexed communication

Distribution: Remote Facade

  The pattern provides a coarse-
grained interface to one or several
fine-grained objects

  The interface is provided through a
remote gateway
  accepts incoming requests

conforming to the facade interface
  subsequent fine-grained interactions

between the remote facade (gateway)
and third party interfaces

  An application using the pattern does
not have to know which particular
servers or remote functions are used
to implement a requested operation

Remote
Facade

Map
Web

Services

Addresses

Coordinates

Coordinates

Routes

Route Segment

Direction

Route Segment

Highlighted
map

Fast fixed-network Last hop
wireless network

Addresses

Directions
and maps

Mobile
Device

Distribution: Data Transfer
Object (DTO)

  The Data Transfer Object (DTO) provides a
serializable container for transferring multiple
data elements between distributed processes

  The aim of the pattern is to reduce the number of
remote method calls

  A DTO can be used to hold all the data that need
to be transferred

  A DTO is usually a simple serializable object
containing a set of fields along with
corresponding getter and setter methods

Distribution: Remote Proxy

  In this pattern, a proxy (or a gateway) is
between a terminal and the network

  All or selected messages or packets from
the client go through the proxy, which can
inspect them and perform actions

  The proxy performs computationally
demanding tasks on behalf of the client
terminal

  The proxy serves as an adapter allowing
other computers to communicate with the
terminal without the need to implement
terminal-specific protocols

Client

Web
Browser

Server

HTTP
Server

CGI,..

Gateway

Encoders
Decoders

encoded
request

encoded
response

request

response
Protocol

Gateways

wireless

Distribution: Observer

  The observer pattern explains how to define a one-to-many
dependency between objects

  All the dependent objects are notified when the state of the object
being observed change

ObserverSubject

ConcreteObserverConcreteSubject

Update observers

Attach/detach observer
Subject getState

Resource Management:
Session Token

  This pattern alleviates state management
requirements of servers.

  A token is issued by a server to a client that
contains data pertaining to the active session the
client has with the server.

  The token contains a session identifier and
possibly some security related data as well.

  When the client presents the token again to the
server, the server can then associate the client
with the proper session

Resource Management: Caching

  The caching pattern suggests temporarily storing these resources in a
local storage after their use, rather than immediately discarding them

  This cache of elements is first checked when a resource is requested
  If the element is found it is immediately delivered to the requesting

application
  If an element is not found in the cache, the request is performed and an

entry is created in the cache for the requested object

ResourceUser

Resource

ResourceCache

ResourceProvider

Access

Access

ResourceProvider provides
Resource

Resource Management:
Eager Acquisition

  If the resources that are needed by an application are known
beforehand, a system can utilize this information and prefetch these
resources

  As a result, the resources are already locally available when they are
needed and a remote request is not needed

  The eager acquisition pattern follows this design and tries to acquire
resources that may be needed later

  Examples of resources include memory, network connections, file
handles, threads, and sessions

ResourceUser
ProviderProxy

ResourceProvider

Resource

Resource Management:
Lazy Acquisition

  In order to optimize the use of system resources the pattern suggests to
defer the resource acquisition until the latest possible time

  The solution consists in acquiring the resources only when it becomes
unavoidable

  The Resource Proxy is responsible for intercepting all the resource
requests issued by the User

  The Resource Proxy does not acquire resources unless they are explicitly
accessed by the User

ResourceUser
ResourceProxy

ResourceProvider

Resource

Synchronization
  In order to be able to manage multiple data items across multiple

devices, this pattern advises to implement a device specific
synchronization (sync) engine.

  The engine is for tracking modifications to data items, exchanging this
information, and then updating the data accordingly when the
connection is available.

  The engine is also responsible for detecting and resolving possible
conflicts that may occur during the synchronization process.

Terminal Host

Synchronization
engine

Synchronization
engine

Data Data

SyncML

Sync
Server
 Agent

App A

Sync
Engine App B

Sync
Client
Agent

SyncML
Framework

SyncML
Adapter

SyncML
I / F

SyncML
Adapter

SyncML
I / F SyncML

XML
Objects

application/vnd.syncml

Transport

(e.g. HTTP / OBEX)

Synchronization: Rendezvous

  Rendezvous can be seen as a central pattern in assisting a network to
cope with mobile devices

  Rendezvous is a process that allows two or more entities to coordinate
their activities

  In a distributed system, rendezvous is typically implemented using a
rendezvous point
  a logically centralized entity, an indirection point, on the network
  accepts messages and packets and maintains state so that it can answer

where a particular mobile device is located

Client A Rendezvous Client BUpdate data Lookup data

Access client A
Either through Rendezvous or directly

Resource Management and
Synchronization: State Transfer (handoff)

  Different kinds of handoffs or handovers
have been specified and implemented in
the mobile computing context

  Handoffs involve state transfer between
access points.

  Handoffs are central in enabling seamless
connectivity in any wireless
communications system.

State Transfer

Old AP New AP Rendezvous Correspondent nodeClient

Old AP is the
current point
of attachment

Attach to a new AP

Update location

Teardown old attachment

Lookup client

Send message

Forward message

Examples:
Rendezvous
and State Transfer

Mobile IP
Wireless CORBA
Mobile Web server Home agent

Correspondent
host

Foreign agent

Mobile host
Home link Foreign

link
Care-of-Address (CoA)

Home domain

Home
Location

Agent

Visited domain Access
Bridge

Access
Bridge

Access
Bridge

Access
Bridge

Terminal
Bridge

Host

GIOP
tunnel Terminal

domain

Web server Browser

DNS
Gateway

Operator
firewall

1

2 3
Internet 2.5 / 3G

Communications:
Connection Factory

  This pattern suggests the decoupling of the
application and the underlying data
communications system by introducing a
component that is used to create, access, and
terminate connections

  The factory design pattern is utilized by the
connection factory pattern in order to allow the
management and reuse of connections in an
efficient manner

  The connection factory pattern is used heavily in
the Java architecture. The communications API
of the Java ME features this pattern

Communications:
Client-initiated connection

  In many cases it is
impossible to reach a
mobile client due to
firewalls and NAT devices
present on the
communication path

  These problems in
connectivity motivate the
use of a client initiated
connection to a publicly
addressable server that can
then push messages to the
client using the connection

Client Edge Proxy Server

Initiate connection

Send message

Forward
message

Lookup service

Update client status

Lookup client

Associate message with connection

Communications:
Multiplexed Connection

  It is not efficient to create many
connections that may compete
for system and network
resources

  The Multiplexed Connection
pattern utilizes a single logical
connection and multiplexes
several higher-level connections
onto it

  This allows the choice of using
arbitrary prioritization for
messages multiplexed over the
connection

Multiplexer Demultiplexer

Connection N

 Connection 1

Connection N

 Connection 1

Single connection

Energy Conservation Patterns

  Target latency specification

  Applications specify, scheduling
  Multitasking API

  Tasks (browsing, search, phone, …)
  Specific scheduling for tasks

  Push API
  Asynchronous notifications

  Wake locks / inform duration of activity
  Ensure device stays on
  Full, partial

  Resource managers for policy
implementation

  Wake-up event

Android
Linux

Blackberry OS
5.0 (Java
development)

iPhone OS Java ME
MIDP

MeeGo Linux Palm
WebOS
Linux

Symbian
Series 60

Windows Mobile .NET
and Windows Phone
7 (WP7)

Low-level power
management

Linux Power Management Proprietary OS Proprietary
OS

Underlying
OS and VM

Linux Power
Management

Linux Power
Management /
proprietary
components

Yes. Kernel-
side framework
with power API
(Power
Manager),
peripheral
power on/off

Proprietary OS

High-level
power
management

Java class PowerManager,
JNI binding to OS. Key
methods: goToSleep(long),
newWakeLock(…),
userActivity(long…)

Access to
system
components
(Backlight,
wireless status,
…)

Limited
access to
OS features

- DeviceKit power
service via D-
Bus

APIs for
informing
activity
duration,
PoweManage
ment API
(Java,
JavaScript)

Applications
use domain
manager that
follows system-
wide power-
state policies.

Nokia Energy
Profiler API

Power Manager in
Windows Mobile.
Managed class
(SystemState) for
coarse grained info.
Native function for
details.N/A for WP7

Energy
conservation
patterns

Wake lock (partial, full). Used
to ensure that device stays
on. Create, acquire, release

Push API Coding
patterns,
Multitasking
API, push
API

Coding
patterns, OS
and
middleware
policies

Applications can
request target
latencies, lowest
latency is used
for user/kernel
interface

Inform
duration of
activity

Active object,
wakeup events,
resource and
domain
manager

Multitasking API (tasks
and push notification),
asynchronous events

Policies Wake lock specific flags and
policies. Normally device
already active, can be woken
when wake lock is acquired

Power on
possible for
scheduled
applications,
(signing
required)

Internal,
Multitasking
API in 4.0

- PolicyKit with
DeviceKit

- Domain
manager for
system-wide
and domain-
wide policy.
Domain-specific
policies are
possible

Policies in Windows
Mobile, N/A for WP7

Battery
information

The BatteryManager class
contains strings and
constants for different battery
related notifications that
applications can subscribe to,
includes: battery level,
temperature, voltage

The class
DeviceInfo
provides access
to battery level,
status, voltage,
and temperature
as well as idle
time since last
user interaction

iPhone OS
3.0 and
later.
UIDevice
Class
allows to
query/
subscribe
battery info

Custom
manufacturer
APIs for
battery level,
JSR 256 for
battery level
and power
supply

D-Bus interface
for battery
status, voltage,
temperature, …

Battery status
API

Battery API
(charge level,
external power).
Nokia Energy
Profiler

Windows Mobile:
managed class for
high-level data, native
functios for details. N/A
for WP7

