
Forwarding with in-packet
Bloom Filters

T-110.6120
9.10.2012

Jimmy Kjällman

Ericsson Research, NomadicLab

Background

General Starting Points

•  New Future Internet architecture

•  Focus on long-term research
–  With feedback to short-term work

•  Clean slate approach
–  Reconsidering old assumptions

•  Redesigning the Internet architecture
–  Considering both technical and

socio-economic aspects

•  Information-Centric Networking
–  Various projects around the world

TCP/IP

Choices and Goals (and Constraints)

•  Information-centric
–  Not host centric

•  Publish/subscribe
–  Instead of send/receive

•  Identify information
–  No (global) node addresses

•  Secure and efficient networking
–  DDoS protection, multicast, …

Projects

•  EU FP7 PSIRP 2008-2010
Publish/Subscribe Internet Routing Paradigm

•  EU FP7 PURSUIT 2010-2013
Publish/Subscribe Internet Technology

•  ICT SHOK FI WP3 2008-2012

!

!

PSIRP/PURSUIT
Basic Architectural functions

•  Rendezvous – matching publish and subscribe events
•  Topology – network topology knowledge, path

computation
•  Forwarding – fast data delivery

Rendezvous Rendezvous Rendezvous

Topology Topology Topology

Publisher
fwd fwd fwd fwd fwd fwd

Subscriber

Interest matching

Path creation

Data delivery

FID

Ideas about Forwarding

•  Need for a new forwarding mechanism in PSIRP
•  Some requirements

–  Multicast support
–  Security (receiver in control, DDoS protection)
–  Efficiency

•  One of the initial ideas: MPLS-like labels

•  Another idea: Bloom filters
–  Very little state and signaling required, native

multicast support, no global addressing, path not
revealed, no routing tables and lookups, no
pushing/popping, …

LIPSIN

•  Line Speed Publish/Subscribe
 Inter-Networking

•  Petri Jokela(*), András Zahemszky, Christian Esteve,
Somaya Arianfar, and Pekka Nikander,
“LIPSIN: Line speed Publish/Subscribe Inter-Networking”,
ACM SIGCOMM 2009

(* Original author of most of these presentation slides.)

Bloom filters –
Burton Howard Bloom, 1970

Bloom filters

•  Probabilistic data structure, space efficient
•  Used to test if an element has been added to a set

0 0 0 0 0 0 0 0 0 0

10-bit Bloom Filter

Hash 1 Hash 2

Bloom filters: Inserting items

•  Hash the data k times, get index values, and set the
bits

Data1

Hash 1(Data1) = 9
 Hash 2(Data1) = 3

10-bit Bloom Filter

0 0 1 0 0 0 0 0 1 0
Hash 1 Hash 2

Bloom filters: Inserting items

•  Hash the data k times, get index values, and set the
bits

Data1

Data2

Hash 1(Data2) = 7
 Hash 2(Data2) = 9

10-bit Bloom Filter

0 0 1 0 0 0 1 0 1 0
Hash 1 Hash 2

Bloom filters: Verifying (positive)

•  All corresponding bits have been set → positive
response

Data 1

Verifying:
 Hash and check if set

Hash 1(Data1) = 9
Hash 2(Data1) = 3

10-bit Bloom Filter

0 0 1 0 0 0 1 0 1 0
Hash 1 Hash 2

Bloom filters: Verifying (negative)

•  Some bits do not match → negative response

Data 3

Hash 1(Data3) = 10
Hash 2(Data3) = 7

10-bit Bloom Filter
Verifying:
 Hash and check if set 0 0 1 0 0 0 1 0 1 0

Hash 1 Hash 2

Bloom filters: False positives

•  Bits match the BF although “Data 4” was never added

Data 4

Hash 1(Data4) = 3
Hash 2(Data4) = 7

10-bit Bloom Filter

Verifying:
 Hash and check if set 0 0 1 0 0 0 1 0 1 0

Hash 1 Hash 2

Slide title
48 pt

Slide subtitle
30 pt

In-packet bloom filters– zFilters

Forwarding with zFilters

•  Source routing
•  Explicitly enumerating all hops requires a lot of space

– so instead we encode this information into a
Bloom filter

{HOP1; HOP2; HOP3; HOP4; HOP5; …}
<Bloom Filter>

Link IDs

•  No names for nodes
–  Each link is identified with a uni-

directional (outgoing) Link ID

•  Link IDs
–  No hashing required,

generate the 1-bits
otherwise (e.g. randomly)

–  Size e.g. 256 bits of which
5 bits set to 1

•  2 x the size of an IPv6 addr
•  Statistically unique

A

D

B C

0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 1 0 0

B→C

A->B
B->C

Link IDs and zFilters

•  Strict source routing
–  Create a path, collect all Link IDs
–  Include (OR) all path’s/tree’s

Link IDs into a Bloom filter
•  Multicast support

–  Include multiple outgoing
links from one router

•  Stateless (almost)
–  Only Link IDs stored on the router

•  Packet forwarding
–  Always to the correct

destination
–  False positives possible

A

D

B C

0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 1 0 0
1 1 0 0 0 1 1 0 1

B→C

A->B
B->C
A->C

Topology manager’s role

•  Needs (intra-)network link information
–  Topology and Link IDs
–  E.g., OSPF, PCE

•  Computes paths on request
–  Creates the zFilter using the

Link ID information
–  Gives the zFilter to the source

node
•  (Source adds zFilter to outgoing

data packets)

00101001

Topology: zFilter formation

00001001 00100001

Source node

OR

Topic DATA 00101001

LID1 LID2

Forwarding decision

•  Forwarding decision based on binary AND and a
comparison
–  zFilter in the packet matched with all outgoing Link IDs
–  Forward if: zFilter AND LID = LID

 (ó (zFilter AND LID) XOR LID = 0)

zFilter

Link ID

& =

zFilter
Yes/No

Interfaces

1 1 0 0 0 1 1 0 1
& 0 1 0 0 0 1 0 0 1

0 1 0 0 0 1 0 0 1

Using Link Identity Tags (LIT)

•  Goal: Better false positive rate
–  Define n different LITs instead of a single LID
–  LIT has the same size as LID, and also k bits set to one
–  Power of choices

•  Route creation and packet forwarding
–  Calculate n different candidate zFilters
–  Select the best performing zFilter (index d) and use that

Link ID

LIT 1

LIT 2

LIT n

Link ID

LIT 1

LIT 2

LIT n

Candidate zFilter

zFilter 1

zFilter 2

zFilter n

Host 1: Iface out Host 2: Iface out

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

Using Link Identity Tags (LIT)

BF

LIT1

& =

Yes/No

LIT2

LITn

d

d? & =

& =

BF d

Interfaces

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

zFilter collection

•  During packet traversal, the reverse zFilter can be
easily generated
–  Add a field in the packet for collected zF
–  All routers forwarding the packet add the incoming LID to the

field
–  Once the packet arrives to the destination, the collected zF

can be used to forward data to the reverse direction
–  Simple especially with symmetric links/paths

Node 2 IF 2-2!

Interface Link ID
IF 1-1 00110000
IF 1-2 00001001

IF 2-1!

DATA

Node 1

zF

IF 1-2!IF 1-1!

zFC

Interface Link ID
IF 2-1 01010000
IF 2-2 10000010

Add incoming, match outgoing zFC = zFC OR LID1-1

Evaluation

Forwarding speed

•  Measured on a NetFPGA
•  Results

–  No routing table lookups
→ lower latency compared
to IP

–  zF latency stays constant,
independent of the network
size

–  Line speed

•  Measurements in Blackadder (software)
–  Early results indicate that line speed forwarding over

10 Gbit/s links can be achieved

Path Avg. latency Std
dev.

Plain wire 94 µs 28 µs
IP router 102 µs 44 µs
zFilter 96 µs 28 µs

Forwarding efficiency

•  Simulations (ns-3) with
–  Rocketfuel
–  SNDlib

•  Forwarding
efficiency with
20 subscribers
–  ~80%

•  AS6461:
138 nodes,
372 links

Forwarding efficiency

•  Simulations with
–  Rocketfuel
–  SNDlib

•  Forwarding
efficiency with
20 subscribers
–  ~80%
–  LIT Optimized:

88%
n

Changing zFilter size

AS3967: 79 nodes, 147 bi-directional links

Security

•  A zFilter to a destination only works on a certain path,
while IP addresses work from any source anywhere
→ Better (although not complete) DDoS resistance

•  zFilter doesn’t reveal (directly) which nodes are
involved in the communication
→ Better privacy

Scalability enhancements

Scalability issues

•  Inter-domain forwarding
–  Too many LIDs in a single

BF results in too many false
positives

Scalability: Relay Nodes

•  Relay node maintains mapping state
–  Map: “Pub ID” = zF1, zF2, …
–  For certain flows, when needed

•  RNs change the zF on the path

Relay Node

Relay Node

Setting up Relay Nodes

Scalability: Splitting the tree

•  No need for additional state
•  Requires more bandwidth at

the source (duplicates sent out)

Scalability – stacking Bloom filters

•  TM divides delivery tree into multiple parts along the
paths

•  Each part has its own BF
•  These BFs are stacked into a packet,

removed at boundaries
•  BFs are variable size, chosen so that the probability of

false positives is minimized

Scalability: Virtual trees

•  Popular paths can be merged into virtual trees
–  A single Link ID for the tree
–  Additional state in the forwarding nodes
–  Increase scalability

•  A virtual tree is not bound to a certain publication
–  E.g. a single tree for all AS transit traffic

B

F

C D

0 0 1 0 1 0 0 0 1

A E

Virtual B->C->D->E

Failover enhancements

Fast reroute – Backup path

•  Node B maintains backup path information
•  In case of broken link, add backup path

–  Increases temporarily the false positive probability until a
new path is calculated at the topology manager

–  No additional signaling

B

F

C

D

Add backup path:
zF = zF | LBF | LFD

Fast reroute – Virtual trees

•  zFilter unmodified
•  Activate backup path in case of node failure

–  Adds signaling

B

F

C

D

Link broken, signal the activation of the backup path to F

LID1

Virtual tree: LID1

Virtual tree: LID1

Loop prevention enhancements

Forwarding anomalies

•  E.g. packet storms, forwarding loops, and
flow duplication

•  Accidental or maliciously created

false positive

flooded
subtree

duplicated
subtree

false positive

Avoiding loops

•  Instead of fixed d determining the used LIT, change
the d e.g. with d=(d+1) MOD e

•  In case of a loop, the packet will have the same d only
if the loop is e hops long

•  Simple, stateless solution

Link ID

LIT 1

LIT 2

LIT 3

Host 1

Link ID

LIT 1

LIT 2

LIT 3

Host 2

Link ID

LIT 1

LIT 2

LIT 3

Host 3

zFilter

Permutations

•  Goal: Prevent forwarding loops and flow duplication
•  Idea: Make forwarding decision depend on the packet’s

path and hop-count
•  Solution: Per-hop bit permutation

–  “Mix” the BF bits in incoming packets according to a function
specific to the incoming interface

–  Simple to implement, no additional space in the packet,
randomizes the BF in case of false positives

–  Requirements
•  Reversible operation, no significant increase in number of

1-bits
•  Multicast zFilters

–  ORing is not enough, must be computed from the leaves of the
tree

Forming the permuted zFilter

•  Especially suitable when zF is collected on reverse path
•  zFilter verification to the other direction

–  Permute with the function
–  Match outgoing interfaces

01010000

Host 1

00011000

01011000

OR

Permute

00010110

LID1-1

00010110

Host 2

01010000

01010110
Permute

OR

11011000

LID 2-1

IF 1-1

IF 1-2

IF 2-1

IF 2-2

Security enhancements

Security weaknesses with
static LID/LITs

•  zFilter replay attacks
–  Sending data with the same zFilter

•  Traffic injection attack
–  Using existing zFilter, send data from the middle of

the path
•  Computational attack

–  Collect zFilters from packets
–  Correlate zFilters to learn link IDs

Secure forwarding

•  Goal: to ensure (probabilistically) that hosts cannot
send un-authorized traffic

•  Solution (z-Formation): Compute LIT in line speed
and bind it to
–  path: in-coming and out-going port
–  time: periodically changing keys
–  flow: flow identifier (e.g. content ID)

Secure case: z-Formation

•  Form LITs
algorithmically
–  at packet handling time
–  LIT(d) = Z(I,K(t),In,Out,d)

•  Secure periodic key K
•  Input port index
•  Output port index
•  Flow ID from the packet,

e.g.
–  Information ID
–  IP addresses & ports

•  d from the packet

Z
IN port #

OUT port #

K(t)

& =

LIT(d)

yes/no

Flow ID

BF d

Security properties

•  Binding a zFilter only to the outgoing port
–  Traffic injection possible
–  Correlation attacks possible

•  Bind to the incoming and outgoing ports
–  Traffic injection difficult (due to binding to

incoming port)
•  Very hard to construct one without knowing keys along

the path
–  Correlation attacks possible only for a given flow

ID
•  Bound to the packet stream (flow ID)

•  Need a cryptographically good Z-algorithm

Applications

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

Data centers

•  zFilters only in the internal network
•  Easier to modify the routing in the network

–  E.g. route packets via certain services: Load balancing,
monitoring...

–  Binding the flow to input and output ports allows flexible
path control at the ingress point

Router
Ingress
router External

network (IP)

Monitoring

Filtering

Data center network - zF based forwarding Monitoring + filtering -> zF-1
Filtering -> zF-2

Decision for zF

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

Background: (G)MPLS
Multiprotocol label switching

•  Evolution: MPLS->MPLS-TE -> GMPLS
•  (G)MPLS is a rich set of protocols

–  Setting up Label Switched Paths
–  Forwarding on the Label Switched Paths
–  Traffic Engineering, resiliency (e.g. fast reroute)
–  Enabler of VPN services
–  Control plane for many different technologies

PE P PE

IP Payload IP Payload Label1 IP Payload Label2 IP Payload

Provider Edge
Router

Provider
Router

Provider Edge
Router

Push label Switch label Pop label

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

MPSS
Multiprotocol stateless switching

•  Advantages over label switching
–  There is not necessarily need for signaling
–  In simpler case, no state required
–  Multicast support (setup, maintenance) much

simpler than with (G)MPLS

PE P PE

IP Payload IP Payload zF IP Payload zF IP Payload

Provider Edge
Router

Provider
Router

Provider Edge
Router

Push zF zF forwarding Pop zF

Slide title
32 pt

Text
 24 pt

Bullets level 2-5

20 pt
› !"# $%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRS
TUVWXYZ[\]
^_`abcdefghijklmnopqr
stuvwxyz{|}~¡¢£¤
¥¦§¨©ª«¬®¯°±²³
´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏ
ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá
âãäåæçèéêëìíîïðñòóôõö
÷øùúûüýþÿĀāĂăąĆćĊċČĎ
ďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķ
ĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœ
ŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰ
űŲųŴŵŶŷŸŹźŻż�Ž�žƒȘșˆˇ˘˙˚˛˜
˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…
‰‹›⁄€™−≤≥fifl

Do not add

objects or text in
the footer area

Multicast VPN with MPSS

•  Effective support of point-to-multipoint communication
•  The bandwidth efficiency vs. Multicast state trade-off eliminated

–  (Though longer header sizes)
•  With zFilters: no multicast states, and acceptable bandwidth

efficiency up to ~20 PEs

PE

PE PE

PE

CE

CE
CE

P P

CE

CE

CE CE

Optical packet forwarding

•  All-optical packet forwarding
–  Matching LID from laser with the iBF
–  XOR with feedback goes to zero if one bit fails (= no

forwarding)

ON/OFF

XOR
(feedback)

Laser

Input

iBF

LID + 0000…

NAND

Payload + iBF

Summary

•  New multicast forwarding mechanism
–  Suits pub/sub and synchronous multicast very well
–  Can also be applied outside our pub/sub model
–  Almost stateless
–  Good security properties

•  But: Some scalability issues – especially due to false
positives
–  And also some security issues

•  Many enhancements/changes/additions to the basic
LIPSIN mechanism have been proposed
–  Tradeoffs

•  E.g., work on inter-domain forwarding ongoing

Some references

•  Petri Jokela, András Zahemszky, Christian Esteve, Somaya
Arianfar, and Pekka Nikander, “LIPSIN: Line speed Publish/
Subscribe Inter-Networking”, ACM SIGCOMM 2009

•  András Zahemszky and Somaya Arianfar, “Fast reroute for
stateless multicast”, IEEE RNDM 2009

•  Christian Esteve et al., “Self-routing Denial-of-Service Resistant
Capabilities using In-packet Bloom Filters”, EC2ND, 2009

•  Christian Esteve et al., “Data center networking with in-packet
Bloom filters”, SBRC, 2010

•  András Zahemszky et al. “MPSS: Multiprotocol Stateless
Switching”, IEEE Global Internet Symposium 2010

•  Mikko Särelä et al., “Forwarding Anomalies in Bloom Filter Based
Multicast”, IEEE INFOCOM 2010

•  Dirk Trossen et al., “PURSUIT Deliverable D2.2: Conceptual
Architecture: Principles, patterns and sub-components
descriptions”, Section 4.3: Forwarding, 2011

•  Sajjad Rizvi, “Performance analysis of bloom filter-based
multicast”, Master’s thesis, Aalto university, 2011

