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Background 



General Starting Points 

•  New Future Internet architecture 

•  Focus on long-term research 
–  With feedback to short-term work 

•  Clean slate approach 
–  Reconsidering old assumptions 

•  Redesigning the Internet architecture 
–  Considering both technical and 

socio-economic aspects 

•  Information-Centric Networking 
–  Various projects around the world 

TCP/IP 



Choices and Goals (and Constraints) 

•  Information-centric 
–  Not host centric 

•  Publish/subscribe 
–  Instead of send/receive 

•  Identify information 
–  No (global) node addresses 

•  Secure and efficient networking 
–  DDoS protection, multicast, … 



Projects 

•  EU FP7 PSIRP   2008-2010 
Publish/Subscribe Internet Routing Paradigm 

•  EU FP7 PURSUIT   2010-2013 
Publish/Subscribe Internet Technology 
 

•  ICT SHOK FI WP3  2008-2012 

!

!



PSIRP/PURSUIT 
Basic Architectural functions 

•  Rendezvous – matching publish and subscribe events 
•  Topology –  network topology knowledge, path 

computation 
•  Forwarding – fast data delivery 

Rendezvous Rendezvous Rendezvous 

Topology Topology Topology 

Publisher 
fwd fwd fwd fwd fwd fwd 

Subscriber 

Interest matching 

Path creation 

Data delivery 

FID 



Ideas about Forwarding 

•  Need for a new forwarding mechanism in PSIRP 
•  Some requirements 

–  Multicast support 
–  Security (receiver in control, DDoS protection) 
–  Efficiency 

•  One of the initial ideas: MPLS-like labels 

•  Another idea: Bloom filters 
–  Very little state and signaling required, native 

multicast support, no global addressing, path not 
revealed, no routing tables and lookups, no 
pushing/popping, … 



LIPSIN 

•   Line Speed Publish/Subscribe 
 Inter-Networking 

•  Petri Jokela(*), András Zahemszky, Christian Esteve, 
Somaya Arianfar, and Pekka Nikander, 
“LIPSIN: Line speed Publish/Subscribe Inter-Networking”, 
ACM SIGCOMM 2009 

(* Original author of most of these presentation slides.) 



Bloom filters – 
Burton Howard Bloom, 1970  



Bloom filters 

•  Probabilistic data structure, space efficient 
•  Used to test if an element has been added to a set 

0  0  0  0  0  0  0  0  0  0 

10-bit Bloom Filter 

Hash 1  Hash 2 



Bloom filters: Inserting items 

•  Hash the data k times, get index values, and set the 
bits 

Data1 

Hash 1(Data1) = 9 
 Hash 2(Data1) = 3 

10-bit Bloom Filter 

0  0  1  0  0  0  0  0  1  0 
Hash 1  Hash 2 



Bloom filters: Inserting items 

•  Hash the data k times, get index values, and set the 
bits 

Data1 

Data2 

Hash 1(Data2) = 7 
 Hash 2(Data2) = 9 

10-bit Bloom Filter 

0  0  1  0  0  0  1  0  1  0 
Hash 1  Hash 2 



Bloom filters: Verifying (positive) 

•  All corresponding bits have been set → positive 
response 

Data 1 

Verifying: 
 Hash and check if set 

Hash 1(Data1) = 9 
Hash 2(Data1) = 3 

10-bit Bloom Filter 

0  0  1  0  0  0  1  0  1  0 
Hash 1  Hash 2 



Bloom filters: Verifying (negative) 

•  Some bits do not match → negative response 

Data 3 

Hash 1(Data3) = 10 
Hash 2(Data3) = 7 

10-bit Bloom Filter 
Verifying: 
 Hash and check if set 0  0  1  0  0  0  1  0  1  0 

Hash 1  Hash 2 



Bloom filters: False positives 

•  Bits match the BF although “Data 4” was never added 

Data 4 

Hash 1(Data4) = 3 
Hash 2(Data4) = 7 

10-bit Bloom Filter 

Verifying: 
 Hash and check if set 0  0  1  0  0  0  1  0  1  0 

Hash 1  Hash 2 
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In-packet bloom filters– zFilters 



Forwarding with zFilters 

•  Source routing 
•  Explicitly enumerating all hops requires a lot of space 

– so instead we encode this information into a 
Bloom filter 

{HOP1; HOP2;   HOP3; HOP4;   HOP5; …} 
<Bloom Filter> 

 



Link IDs  

•  No names for nodes 
–  Each link is identified with a uni- 

directional (outgoing) Link ID 

•  Link IDs 
–  No hashing required, 

generate the 1-bits  
otherwise (e.g. randomly) 

–  Size e.g. 256 bits of which  
5 bits set to 1 

•  2 x the size of an IPv6 addr 
•  Statistically unique 

A 

D 

B C 

0 1 0 0 0 1 0 0 1  
1 0 0 0 0 1 1 0 0  
 

B→C 

A->B 
B->C 
 



Link IDs and zFilters 

•  Strict source routing 
–  Create a path, collect all Link IDs 
–  Include (OR) all path’s/tree’s 

Link IDs into a Bloom filter 
•  Multicast support 

–  Include multiple outgoing 
links from one router 

•  Stateless (almost) 
–  Only Link IDs stored on the router 

•  Packet forwarding 
–  Always to the correct  

destination 
–  False positives possible 

A 

D 

B C 

0 1 0 0 0 1 0 0 1  
1 0 0 0 0 1 1 0 0  
1 1 0 0 0 1 1 0 1 
 

B→C 

A->B 
B->C 
A->C 
 



Topology manager’s role 

•  Needs (intra-)network link information 
–  Topology and Link IDs 
–  E.g., OSPF, PCE 

•  Computes paths on request 
–  Creates the zFilter using the 

Link ID information 
–  Gives the zFilter to the source 

node 
•  (Source adds zFilter to outgoing 

data packets) 
 

00101001 

Topology: zFilter formation 

00001001 00100001 

Source node 

OR 

Topic  DATA 00101001 

LID1 LID2 



Forwarding decision 

•  Forwarding decision based on binary AND and a 
comparison 
–  zFilter in the packet matched with all outgoing Link IDs 
–  Forward if:  zFilter AND LID = LID 

  (ó (zFilter AND LID) XOR LID = 0)  

zFilter 

Link ID 

& = 

zFilter 
Yes/No 

Interfaces 

1 1 0 0 0 1 1 0 1 
& 0 1 0 0 0 1 0 0 1 

0 1 0 0 0 1 0 0 1  



Using Link Identity Tags (LIT) 

•  Goal: Better false positive rate 
–  Define n different LITs instead of a single LID 
–  LIT has the same size as LID, and also k bits set to one 
–  Power of choices 

•  Route creation and packet forwarding 
–  Calculate n different candidate zFilters 
–  Select the best performing zFilter (index d) and use that 

Link ID 

LIT 1 

LIT 2 

LIT n 

Link ID 

LIT 1 

LIT 2 

LIT n 

Candidate zFilter 

zFilter 1 

zFilter 2 

zFilter n 

Host 1: Iface out Host 2: Iface out 
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Using Link Identity Tags (LIT) 

 
 

BF 

LIT1 

& = 

Yes/No 

LIT2 

LITn 

d 

d? & = 

& = 

BF d 

Interfaces 
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zFilter collection 

•  During packet traversal, the reverse zFilter can be 
easily generated 
–  Add a field in the packet for collected zF 
–  All routers forwarding the packet add the incoming LID to the 

field 
–  Once the packet arrives to the destination, the collected zF 

can be used to forward data to the reverse direction 
–  Simple especially with symmetric links/paths 

Node 2 IF 2-2!

Interface Link ID 
IF 1-1 00110000 
IF 1-2 00001001 

IF 2-1!

DATA 

Node 1 

zF 

IF 1-2!IF 1-1!

zFC 

Interface Link ID 
IF 2-1 01010000 
IF 2-2 10000010 

Add incoming, match outgoing zFC = zFC OR LID1-1 



Evaluation 



Forwarding speed 

•  Measured on a NetFPGA 
•  Results 

–  No routing table lookups 
→ lower latency compared  
to IP 

–  zF latency stays constant,  
independent of the network  
size 

–  Line speed 

•  Measurements in Blackadder (software) 
–  Early results indicate that line speed forwarding over 

10 Gbit/s links can be achieved 
 

Path Avg. latency Std 
dev. 

Plain wire 94 µs 28 µs 
IP router 102 µs 44 µs 
zFilter 96 µs 28 µs 



Forwarding efficiency 

•  Simulations (ns-3) with 
–  Rocketfuel 
–  SNDlib 

•  Forwarding  
efficiency with  
20 subscribers 
–  ~80% 

•  AS6461: 
138 nodes, 
372 links 



Forwarding efficiency 

•  Simulations with 
–  Rocketfuel 
–  SNDlib 

•  Forwarding  
efficiency with  
20 subscribers 
–  ~80% 
–  LIT Optimized:  

88% 
n 



Changing zFilter size 

AS3967: 79 nodes, 147 bi-directional links 



Security 

•  A zFilter to a destination only works on a certain path, 
while IP addresses work from any source anywhere 
→ Better (although not complete) DDoS resistance 

•  zFilter doesn’t reveal (directly) which nodes are 
involved in the communication 
→ Better privacy 



Scalability enhancements 



Scalability issues 

•  Inter-domain forwarding 
–  Too many LIDs in a single  

BF results in too many false  
positives 

 

 

 

 

 

 

 

 

 

 

 

 



Scalability: Relay Nodes 

•  Relay node maintains mapping state 
–  Map: “Pub ID” = zF1, zF2, … 
–  For certain flows, when needed 

•  RNs change the zF on the path 

 

 

 

 

 

 

 

 

 

 

 

 

Relay Node 

Relay Node 



Setting up Relay Nodes 



Scalability: Splitting the tree 

•  No need for additional state 
•  Requires more bandwidth at  

the source (duplicates sent out) 

 

 

 

 

 

 

 

 

 

 

 

 



Scalability – stacking Bloom filters 

•  TM divides delivery tree into multiple parts along the 
paths 

•  Each part has its own BF 
•  These BFs are stacked into a packet, 

removed at boundaries 
•  BFs are variable size, chosen so that the probability of 

false positives is minimized 



Scalability: Virtual trees 

•  Popular paths can be merged into virtual trees 
–  A single Link ID for the tree 
–  Additional state in the forwarding nodes 
–  Increase scalability 

•  A virtual tree is not bound to a certain publication 
–  E.g. a single tree for all AS transit traffic 

B 

F 

C D 

0 0 1 0 1 0 0 0 1  

A E 

Virtual B->C->D->E  



Failover enhancements 



Fast reroute – Backup path  

•  Node B maintains backup path information  
•  In case of broken link, add backup path  

–  Increases temporarily the false positive probability until a 
new path is calculated at the topology manager 

–  No additional signaling 

B 

F 

C 

D 

Add backup path: 
zF = zF | LBF | LFD 



Fast reroute – Virtual trees 

•  zFilter unmodified 
•  Activate backup path in case of node failure 

–  Adds signaling 

B 

F 

C 

D 

Link broken, signal  the activation of the  backup path to F 

LID1 

Virtual tree: LID1 

Virtual tree: LID1 



Loop prevention enhancements 



Forwarding anomalies 

•  E.g. packet storms, forwarding loops, and 
flow duplication 

•  Accidental or maliciously created  

false positive

flooded
subtree

duplicated
subtree

false positive



Avoiding loops 

•  Instead of fixed d determining the used LIT, change 
the d e.g. with d=(d+1) MOD e 

•  In case of a loop, the packet will have the same d only 
if the loop is e hops long 

•  Simple, stateless solution 

Link ID 

LIT 1 

LIT 2 

LIT 3 

Host 1 

Link ID 

LIT 1 

LIT 2 

LIT 3 

Host 2 

Link ID 

LIT 1 

LIT 2 

LIT 3 

Host 3 

zFilter 



Permutations 

•  Goal: Prevent forwarding loops and flow duplication 
•  Idea: Make forwarding decision depend on the packet’s 

path and hop-count 
•  Solution: Per-hop bit permutation 

–  “Mix” the BF bits in incoming packets according to a function 
specific to the incoming interface 

–  Simple to implement, no additional space in the packet, 
randomizes the BF in case of false positives 

–  Requirements 
•  Reversible operation, no significant increase in number of 

1-bits 
•  Multicast zFilters 

–  ORing is not enough, must be computed from the leaves of the 
tree 



Forming the permuted zFilter 

•  Especially suitable when zF is collected on reverse path 
•  zFilter verification to the other direction 

–  Permute with the function 
–  Match outgoing interfaces 

01010000 

Host 1 

00011000 

01011000 

OR 

Permute 

00010110 

LID1-1 

00010110 

Host 2 

01010000 

01010110 
Permute 

OR 

11011000 

LID 2-1 

IF 1-1 

IF 1-2 

IF 2-1 

IF 2-2 



Security enhancements 



Security weaknesses with 
static LID/LITs 

•  zFilter replay attacks 
–  Sending data with the same zFilter 

•  Traffic injection attack 
–  Using existing zFilter, send data from the middle of 

the path 
•  Computational attack 

–  Collect zFilters from packets 
–  Correlate zFilters to learn link IDs 



Secure forwarding 

•  Goal: to ensure (probabilistically) that hosts cannot 
send un-authorized traffic 

•  Solution (z-Formation): Compute LIT in line speed 
and bind it to   
–  path: in-coming and out-going port 
–  time: periodically changing keys 
–  flow: flow identifier (e.g. content ID) 



Secure case: z-Formation 

•  Form LITs 
algorithmically 
–  at packet handling time 
–  LIT(d) = Z(I,K(t),In,Out,d) 

•  Secure periodic key K 
•  Input port index 
•  Output port index  
•  Flow ID from the packet, 

e.g. 
–  Information ID 
–  IP addresses & ports 

•  d from the packet 

Z 
IN port # 

OUT port # 

K(t) 

& = 

LIT(d) 

yes/no 

Flow ID 

BF d 



Security properties 

•  Binding a zFilter only to the outgoing port 
–  Traffic injection possible 
–  Correlation attacks possible 

•  Bind to the incoming and outgoing ports 
–  Traffic injection difficult (due to binding to 

incoming port) 
•  Very hard to construct one without knowing keys along 

the path 
–  Correlation attacks possible only for a given flow 

ID 
•  Bound to the packet stream (flow ID) 

•  Need a cryptographically good Z-algorithm 



Applications 
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Data centers 

•  zFilters only in the internal network 
•  Easier to modify the routing in the network 

–  E.g. route packets via certain services: Load balancing, 
monitoring... 

–  Binding the flow to input and output ports allows flexible 
path control at the ingress point 

Router 
Ingress 
router External 

network (IP) 
 

Monitoring 

Filtering 

Data center network - zF based forwarding Monitoring + filtering -> zF-1 
Filtering -> zF-2 

Decision for zF 
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Background: (G)MPLS 
Multiprotocol label switching 

•  Evolution: MPLS->MPLS-TE -> GMPLS 
•  (G)MPLS is a rich set of protocols 

–  Setting up Label Switched Paths 
–  Forwarding on the Label Switched Paths 
–  Traffic Engineering, resiliency (e.g. fast reroute) 
–  Enabler of VPN services 
–  Control plane for many different technologies 

PE P PE 

IP  Payload IP  Payload Label1 IP  Payload Label2 IP  Payload 

Provider Edge 
Router 

Provider 
Router 

Provider Edge 
Router 

Push label Switch label Pop label 
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MPSS 
Multiprotocol stateless switching 

•  Advantages over label switching 
–  There is not necessarily need for signaling 
–  In simpler case, no state required 
–  Multicast support (setup, maintenance) much 

simpler than with (G)MPLS 

PE P PE 

IP  Payload IP  Payload zF IP  Payload zF IP  Payload 

Provider Edge 
Router 

Provider 
Router 

Provider Edge 
Router 

Push zF zF forwarding Pop zF 
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Multicast VPN with MPSS 

•  Effective support of point-to-multipoint communication 
•  The bandwidth efficiency vs. Multicast state trade-off eliminated 

–  (Though longer header sizes) 
•  With zFilters: no multicast states, and acceptable bandwidth 

efficiency up to ~20 PEs 

PE 

PE PE 

PE 

CE 

CE 
CE 

P P 

CE 

CE 

CE CE 



Optical packet forwarding 

•  All-optical packet forwarding 
–  Matching LID from laser with the iBF 
–  XOR with feedback goes to zero if one bit fails (= no 

forwarding) 

ON/OFF 

XOR 
(feedback) 

Laser 

Input 

iBF 

LID + 0000… 

NAND 

Payload + iBF 



Summary 

•  New multicast forwarding mechanism 
–  Suits pub/sub and synchronous multicast very well 
–  Can also be applied outside our pub/sub model 
–  Almost stateless 
–  Good security properties 

•  But: Some scalability issues – especially due to false 
positives 
–  And also some security issues 

•  Many enhancements/changes/additions to the basic 
LIPSIN mechanism have been proposed 
–  Tradeoffs 

•  E.g., work on inter-domain forwarding ongoing 



Some references 

•  Petri Jokela, András Zahemszky, Christian Esteve, Somaya 
Arianfar, and Pekka Nikander, “LIPSIN: Line speed Publish/
Subscribe Inter-Networking”, ACM SIGCOMM 2009 

•  András Zahemszky and Somaya Arianfar, “Fast reroute for 
stateless multicast”, IEEE RNDM 2009 

•  Christian Esteve et al., “Self-routing Denial-of-Service Resistant 
Capabilities using In-packet Bloom Filters”, EC2ND, 2009 

•  Christian Esteve et al., “Data center networking with in-packet 
Bloom filters”, SBRC, 2010 

•  András Zahemszky et al.  “MPSS: Multiprotocol Stateless 
Switching”, IEEE Global Internet Symposium 2010 

•  Mikko Särelä et al., “Forwarding Anomalies in Bloom Filter Based 
Multicast”, IEEE INFOCOM 2010 

•  Dirk Trossen et al., “PURSUIT Deliverable D2.2: Conceptual 
Architecture: Principles, patterns and sub-components 
descriptions”, Section 4.3: Forwarding, 2011 

•  Sajjad Rizvi, “Performance analysis of bloom filter-based 
multicast”, Master’s thesis, Aalto university, 2011 


