
Floodless in SEATTLE: A Scalable Ethernet Architecture
for Large Enterprises

Changhoon Kim Matthew Caesar Jennifer Rexford
Princeton University Princeton University Princeton University

Abstract
IP networks today require massive effort to configure and
manage. Ethernet is vastly simpler to manage, but does not
scale beyond small local area networks. This paper describes
an alternative network architecture called SEATTLE that
achieves the best of both worlds: The scalability of IP com-
bined with the simplicity of Ethernet. SEATTLE provides
plug-and-play functionality via flat addressing, while ensur-
ing scalability and efficiency through shortest-path routing
and hash-based resolution of host information. In contrast to
previous work on identity-based routing, SEATTLE ensures
path predictability and stability, and simplifies network man-
agement. We performed a simulation study driven by real-
world traffic traces and network topologies, and used Emu-
lab to evaluate a prototype of our design based on the Click
and XORP open-source routing platforms. Our experiments
show that SEATTLE efficiently handles network failures and
host mobility, while reducing control overhead and state re-
quirements by roughly two orders of magnitude compared
with Ethernet bridging.

1. Introduction
Ethernet stands as one of the most widely used networking

technologies today. Due to its simplicity and ease of configu-
ration, many enterprise and access provider networks utilize
Ethernet as an elementary building block. Each host in an
Ethernet is assigned a persistent MAC address, and Ether-
net bridges automatically learn host addresses and locations.
These “plug-and-play” semantics simplify many aspects of
network configuration. Flat addressing simplifies the han-
dling of topology changes and host mobility, without requir-
ing administrators to perform address reassignment.

However, Ethernet is facing revolutionary challenges. To-
day’s layer-2 networks are being built on an unprecedented
scale and with highly demanding requirements in terms of
efficiency and availability. Large data centers are being built,
comprising hundreds of thousands of computers within a
single facility [1], and maintained by hundreds of network
operators. To reduce energy costs, these data centers em-
ploy virtual machine migration and adapt to varying work-
loads, placing additional requirements on agility (e.g., host
mobility, fast topology changes). Additionally, large metro
Ethernet deployments contain over a million hosts and tens
of thousands of bridges [2]. Ethernet is also being increas-
ingly deployed in highly dynamic networks, for example as
backhaul for wireless campus networks, and in transport net-
works for developing regions [3].

While an Ethernet-based solution becomes all the more
important in these environments because it ensures service
continuity and simplifies configuration, conventional Ether-
net has some critical limitations. First, Ethernet bridging
relies on network-wide flooding to locate end hosts. This
results in large state requirements and control message over-
head that grows with the size of the network. Second, Ether-
net forces paths to comprise a spanning tree. Spanning trees
perform well for small networks which often do not have
many redundant paths anyway, but introduce substantial in-
efficiencies on larger networks that have more demanding
requirements for low latency, high availability, and traffic en-
gineering. Finally, critical bootstrapping protocols used fre-
quently by end hosts, such as Address Resolution Protocol
(ARP) and Dynamic Host Configuration Protocol (DHCP),
rely on broadcasting. This not only consumes excessive re-
sources, but also introduces security vulnerabilities and pri-
vacy concerns.

Network administrators sidestep Ethernet’s inefficiencies
today by interconnecting small Ethernet LANs using routers
running the Internet Protocol (IP). IP routing ensures effi-
cient and flexible use of networking resources via shortest-
path routing. It also has control overhead and forwarding-
table sizes that are proportional to the number of subnets
(i.e., prefixes), rather than the number of hosts. However, in-
troducing IP routing breaks many of the desirable properties
of Ethernet. For example, network administrators must now
subdivide their address space to assign IP prefixes across the
topology, and update these configurations when the network
design changes. Subnetting leads to wasted address space,
and laborious configuration tasks. Although DHCP auto-
mates host address configuration, maintaining consistency
between DHCP servers and routers still remains challeng-
ing. Moreover, since IP addresses are not persistent iden-
tifiers, ensuring service continuity across location changes
(e.g., due to virtual machine migration or physical mobil-
ity) becomes more challenging. Additionally, access-control
policies must be specified based on the host’s current posi-
tion, and updated when the host moves.

Alternatively, operators may use Virtual LANs (VLANs)
to build IP subnets independently of host location. While
the overhead of address configuration and IP routing may be
reduced by provisioning VLANs over a large number of, if
not all, bridges, doing so reduces benefits of broadcast scop-
ing, and worsens data-plane efficiency due to larger spanning
trees. Efficiently assigning VLANs over bridges and links
must also consider hosts’ communication and mobility pat-



terns, and hence is hard to automate. Moreover, since hosts
in different VLANs still require IP to communicate with one
another, this architecture still inherits many of the challenges
of IP mentioned above.

In this paper, we address the following question: Is
it possible to build a protocol that maintains the same
configuration-free properties as Ethernet bridging, yet
scales to large networks? To answer this question, we
present a Scalable Ethernet Architecture for Large Enter-
prises (SEATTLE). Specifically, SEATTLE offers the fol-
lowing novel features:

A one-hop, network-layer DHT: SEATTLE forwards pack-
ets based on end-host MAC addresses. However, SEATTLE
does not require each switch to maintain state for every host,
nor does it require network-wide floods to disseminate host
locations. Instead, SEATTLE uses the global switch-level
view provided by a link-state routing protocol to form a one-
hop DHT [4], which stores the location of each host. We
use this network-layer DHT to build a flexible directory ser-
vice which also performs address resolution (e.g., storing
the MAC address associated with an IP address), and more
flexible service discovery (e.g., storing the least loaded DNS
server or printer within the domain). In addition, to pro-
vide stronger fault isolation and to support delegation of ad-
ministrative control, we present the design of a hierarchical,
multi-level one-hop DHT.
Traffic-driven location resolution and caching: To forward
packets along shortest paths and to avoid excessive load on
the directory service, switches cache responses to queries.
In enterprise networks, hosts typically communicate with a
small number of other hosts [5], making caching highly ef-
fective. Furthermore, SEATTLE also provides a way to pig-
gyback location information on ARP replies, which elimi-
nates the need for location resolution when forwarding data
packets. This allows data packets to directly traverse the
shortest path, making the network’s forwarding behavior
predictable and stable.
A scalable, prompt cache-update protocol: Unlike Ethernet
which relies on timeouts or broadcasts to keep forwarding
tables up-to-date, SEATTLE proposes an explicit and reli-
able cache update protocol based on unicast. This ensures
that all packets are delivered based on up-to-date state while
keeping control overhead low. In contrast to conventional
DHTs, this update process is directly triggered by network-
layer changes, providing fast reaction times. For example,
by observing link-state advertisements, switches determine
when a host’s location is no longer reachable, and evict those
invalid entries. Through these approaches, SEATTLE seam-
lessly supports host mobility and other dynamics.

Despite these features, our design remains backwards-
compatible with existing applications and protocols running
at end hosts. For example, SEATTLE allows hosts to gen-
erate broadcast ARP and DHCP messages, and internally
converts them into unicast-based queries to a directory ser-
vice. SEATTLE switches can also handle general (i.e., non-
ARP and non-DHCP) broadcast traffic through loop-free

multicasting. To offer broadcast scoping and access control,
SEATTLE also provides a more scalable and flexible way to
create VLANs that reduces manual configuration overhead.

1.1 Related work
Our quest is to design, implement, and evaluate a prac-

tical replacement for Ethernet that scales to large and dy-
namic networks. Although there are many approaches to
enhance Ethernet bridging, none of these are suitable for
our purposes. SmartBridges [6] and RBridges [7, 8] lever-
age a link-state protocol to disseminate information about
both bridge connectivity and host state. This eliminates the
need to maintain a spanning tree and improves forwarding
paths. CMU-Ethernet [9] also leverages link-state, but elimi-
nates per-host broadcasting by propagating host information
in link-state updates. Viking [10] uses multiple spanning
trees for faster fault recovery, which can be dynamically ad-
justed to conform to changing load. Though SEATTLE was
inspired by the problems addressed in these works, it takes
a radically different approach that eliminates network-wide
dissemination of per-host information. This results in sub-
stantially improved control-plane scalability and data-plane
efficiency. While there have been works on using hash-
ing to support flat addressing conducted in parallel with
our work [11, 12, 13], these works do not promptly handle
host dynamics, require some packets to be detoured away
from the shortest path or be forwarded along a spanning
tree, and do not support hierarchical configurations to en-
sure fault/path isolation and the delegation of administrative
control necessary for large networks.

The design we propose is also substantially different from
recent work on identity-based routing (ROFL [14], UIP [15],
and VRR [16]). Our solution is suitable for building a
practical and easy-to-manage network for several reasons.
First, these previous approaches determine paths based on
a hash of the destination’s identifier (or the identifier it-
self), incurring a stretch penalty (which is unbounded in
the worst case). In contrast, SEATTLE does not perform
identity-based routing. Instead, SEATTLE uses resolution
to map a MAC address to a host’s location, and then uses
the location to deliver packets along the shortest path to the
host. This reduces latency and makes it easier to control
and predict network behavior. Predictability and controlla-
bility are extremely important in real networks, because they
make essential management tasks (e.g., capacity planning,
troubleshooting, traffic engineering) possible. Second, the
path between two hosts in a SEATTLE network does not
change as other hosts join and leave the network. This sub-
stantially reduces packet reordering and improves constancy
of path performance. Finally, SEATTLE employs traffic-
driven caching of host-information, as opposed to the traffic-
agnostic caching (e.g., finger caches in ROFL) used in pre-
vious works. By only caching information that is needed to
forward packets, SEATTLE significantly reduces the amount
of state required to deliver packets. However, our design also
consists of several generic components, such as the multi-
level one-hop DHT and service discovery mechanisms, that
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could be reused and adapted to the work in [14, 15, 16].
Roadmap: We summarize how conventional enterprise net-
works are built and motivate our work in Section 2. Then we
describe our main contributions in Sections 3 and 4 where
we introduce a very simple yet highly scalable mechanism
that enables shortest-path forwarding while maintaining the
same semantics as Ethernet. In Section 5, we enhance ex-
isting Ethernet mechanisms to make our design backwards-
compatible with conventional Ethernet. We then evaluate
our protocol using simulations in Section 6 and an imple-
mentation in Section 7. Our results show that SEATTLE
scales to networks containing two orders of magnitude more
hosts than a traditional Ethernet network. As compared
with ROFL, SEATTLE reduces state requirements required
to achieve reasonably low stretch by a factor of ten, and im-
proves path stability by more than three orders of magnitude
under typical workloads. SEATTLE also handles network
topology changes and host mobility without significantly in-
creasing control overhead.

2. Today’s Enterprise and Access Networks
To provide background for the remainder of the paper, and

to motivate SEATTLE, this section explains why Ethernet
bridging is limited to small LANs. Then we describe hy-
brid IP/Ethernet networks and VLANs, two widely-used ap-
proaches which improve scalability over conventional Eth-
ernet, but introduce management complexity, eliminating
many of the “plug-and-play” advantages of Ethernet.

2.1 Ethernet bridging
An Ethernet network is composed of segments, each com-

prising a single physical layer 1. Ethernet bridges are used
to interconnect multiple segments into a multi-hop network,
namely a LAN, forming a single broadcast domain. Each
host is assigned a unique 48-bit MAC (Media Access Con-
trol) address. A bridge learns how to reach hosts by inspect-
ing the incoming frames, and associating the source MAC
address with the incoming port. A bridge stores this infor-
mation in a forwarding table that it uses to forward frames
toward their destinations. If the destination MAC address
is not present in the forwarding table, the bridge sends the
frame on all outgoing ports, initiating a domain-wide flood.
Bridges also flood frames that are destined to a broadcast
MAC address. Since Ethernet frames do not carry a TTL
(Time-To-Live) value, the existence of multiple paths in the
topology can lead to broadcast storms, where frames are re-
peatedly replicated and forwarded along a loop. To avoid
this, bridges in a broadcast domain coordinate to compute a
spanning tree that is used to forward frames [17]. Admin-
istrators first select and configure a single root bridge; then,
the bridges collectively compute a spanning tree based on
distances to the root. Links not present in the tree are not
used to carry traffic, causing longer paths and inefficient use
of resources. Unfortunately, Ethernet-bridged networks can-
not grow to a large scale due to following reasons.
1In modern switched Ethernet networks, a segment is just a point-to-point
link connecting an end host and a bridge, or a pair of bridges.

Globally disseminating every host’s location: Flooding and
source-learning introduce two problems in a large broadcast
domain. First, the forwarding table at a bridge can grow
very large because flat addressing increases the table size
proportionally to the total number of hosts in the network.
Second, the control overhead required to disseminate each
host’s information via flooding can be very large, wasting
link bandwidth and processing resources. Since hosts (or
their network interfaces) power up/down (manually, or dy-
namically to reduce power consumption), and change loca-
tion relatively frequently, flooding is an expensive way to
keep per-host information up-to-date. Moreover, malicious
hosts can intentionally trigger repeated network-wide floods
through, for example, MAC address scanning attacks [18].
Inflexible route selection: Forcing all traffic to traverse a
single spanning tree makes forwarding more failure-prone
and leads to suboptimal paths and uneven link loads. Load
is especially high on links near the root bridge. Thus, choos-
ing the right root bridge is extremely important, imposing an
additional administrative burden. Moreover, using a single
tree for all communicating pairs, rather than shortest paths,
significantly reduces the aggregate throughput of a network.
Dependence on broadcasting for basic operations: DHCP
and ARP are used to assign IP addresses and manage map-
pings between MAC and IP addresses, respectively. A host
broadcasts a DHCP-discovery message whenever it believes
its network attachment point has changed. Broadcast ARP
requests are generated more frequently, whenever a host
needs to know the MAC address associated with the IP ad-
dress of another host in the same broadcast domain. Relying
on broadcast for these operations degrades network perfor-
mance. Moreover, every broadcast message must be pro-
cessed by every end host; since handling of broadcast frames
is often application or OS-specific, these frames are not han-
dled by the network interface card, and instead must inter-
rupt the CPU [19]. For portable devices on low-bandwidth
wireless links, receiving ARP packets can consume a sig-
nificant fraction of the available bandwidth, processing, and
power resources. Moreover, the use of broadcasting for ARP
and DHCP opens vulnerabilities for malicious hosts as they
can easily launch network-wide ARP or DHCP floods [9].

2.2 Hybrid IP/Ethernet architecture
One way of dealing with Ethernet’s limited scalability is

to build enterprise and access provider networks out of mul-
tiple LANs interconnected by IP routing. In these hybrid
networks, each LAN contains at most a few hundred hosts
that collectively form an IP subnet. An IP subnet is given
an IP prefix representing the subnet. Each host in the sub-
net is then assigned an IP address from the subnet’s prefix.
Assigning IP prefixes to subnets, and associating subnets
with router interfaces is typically a manual process, as the
assignment must follow the addressing hierarchy, yet must
reduce wasted namespace, and must consider future use of
addresses to minimize later reassignment. Unlike a MAC
address, which functions as a host identifier, an IP address
denotes the host’s current location in the network. Since
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IP routing protocols use a different addressing and path-
selection mechanism from Ethernet, it is impossible to share
routing information across the two protocols. This forces
the two protocols to be deployed independently, and be con-
nected only at certain fixed nodes called default gateways.

The biggest problem of the hybrid architecture is its mas-
sive configuration overhead. Configuring hybrid networks
today represents an enormous challenge. Some estimates
put 70% of an enterprise network’s operating cost as main-
tenance and configuration, as opposed to equipment costs or
power usage [20]. In addition, involving human administra-
tors in the loop increases reaction time to faults and increases
potential for misconfiguration.
Configuration overhead due to hierarchical addressing:
An IP router cannot function correctly until administrators
specify subnets on router interfaces, and direct routing pro-
tocols to advertise the subnets. Similarly, an end host cannot
access the network until it is configured with an IP address
corresponding to the subnet where the host is currently lo-
cated. DHCP automates end-host configuration, but intro-
duces substantial configuration overhead for managing the
DHCP servers. In particular, maintaining consistency be-
tween subnet router configuration and DHCP address al-
location configuration, or coordinating policies across dis-
tributed DHCP servers, are not simple matters. Finally, net-
work administrators must continually revise this configura-
tion to handle network changes.
Complexity in implementing networking policies: Admin-
istrators today use a collection of access controls, QoS
(Quality of Service) controls [21], and other policies to con-
trol the way packets flow through their networks. These poli-
cies are typically defined based on IP prefixes. However,
since prefixes are assigned based on the topology, changes
to the network design require these policies to be rewritten.
More significantly, rewriting networking policies must hap-
pen immediately after network design changes to prevent
reachability problems and to avoid vulnerabilities. Ideally,
administrators should only need to update policy configura-
tions when the policy itself, not the network, changes.
Limited mobility support: Supporting seamless host mo-
bility is becoming increasingly important. In data centers,
migratable virtual machines are being widely deployed to
improve power efficiency by adapting to workload, and to
minimize service disruption during maintenance operations.
Large universities or enterprises often build campus-wide
wireless networks, using a wired backhaul to support host
mobility across access points. To ensure service continuity
and minimize policy update overhead, it is highly desirable
for a host to retain its IP address regardless of its location
in these networks. Unfortunately, hybrid networks constrain
host mobility only within a single, usually small, subnet. In
a data center, this can interfere with the ability to handle
load spikes; in wireless backhaul networks, this can cause
service disruptions. One way to deal with this is to increase
the size of subnets by increasing broadcast domains, which
introduces the scaling problems mentioned in Section 2.1.

2.3 Virtual LANs
VLANs address some of the problems of Ethernet and

IP networks. VLANs allow administrators to group multi-
ple hosts sharing the same networking requirements into a
single broadcast domain. Unlike a physical LAN, a VLAN
can be defined logically, regardless of individual hosts’ lo-
cations in a network. VLANs can also be overlapped by
allowing bridges (not hosts) to be configured with multiple
VLANs. By dividing a large bridged network into several
appropriately-sized VLANs, administrators can reduce the
broadcast overhead imposed on hosts in each VLAN, and
also ensure isolation among different host groups. Com-
pared with IP, VLANs simplify mobility, as hosts may re-
tain their IP addresses while moving between bridges in the
same VLAN. This also reduces policy reconfiguration over-
head. Unfortunately, VLANs introduces several problems:
Trunk configuration overhead: Extending a VLAN across
multiple bridges requires the VLAN to be trunked (provi-
sioned) at each of the bridges participating in the VLAN.
Deciding which bridges should be in a given VLAN must
take into account traffic and mobility patterns to ensure effi-
cient operation, and hence is often done manually.
Limited control-plane scalability: Although VLANs reduce
the broadcast overhead imposed on a particular end host,
bridges provisioned with multiple VLANs must maintain
forwarding-table entries and process broadcast traffic for ev-
ery active host in every VLAN visible to themselves. Unfor-
tunately, to enhance resource utilization and host mobility,
and to reduce trunk configuration overhead, VLANs are of-
ten provisioned larger than necessary, worsening this prob-
lem. A large forwarding table complicates bridge design,
since forwarding tables in Ethernet bridges are typically im-
plemented using Content-Addressable Memory (CAM), an
expensive and power-intensive technology.
Insufficient data-plane efficiency: Larger enterprises and
data centers often have richer topologies, for greater reliabil-
ity and performance. Unfortunately, a single spanning tree is
used in each VLAN to forward packets, which prevents cer-
tain links from being used. Although configuring a disjoint
spanning tree for each VLAN [10, 22] may improve load
balance and increase aggregate throughput, effective use of
per-VLAN trees requires periodically moving the roots and
rebalancing the trees, which must be manually updated as
traffic shifts. Moreover, inter-VLAN traffic must be routed
via IP gateways, rather than shortest physical paths.

3. Network-Layer One-hop DHT
The goal of a conventional Ethernet is to route packets to

a destination specified by a MAC address. To do this, Ether-
net bridges collectively provide end hosts with a service that
maps MAC addresses to physical locations. Each bridge im-
plements this service by maintaining next-hop pointers asso-
ciated with MAC addresses in its forwarding table, and relies
on domain-wide flooding to keep these pointers up to date.
Additionally, Ethernet also allows hosts to look up the MAC
address associated with a given IP address by broadcasting
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Address Resolution Protocol (ARP) messages.
In order to provide the same interfaces to end hosts as

conventional Ethernet, SEATTLE also needs a mechanism
that maintains mappings between MAC/IP addresses and lo-
cations. To scale to large networks, SEATTLE operates a
distributed directory service built using a one-hop, network-
level DHT. We use a one-hop DHT to reduce lookup com-
plexity and simplify certain aspects of network administra-
tion such as traffic engineering and troubleshooting. We use
a network-level approach that stores mappings at switches,
so as to ensure fast and efficient reaction to network fail-
ures and recoveries, and avoid the control overhead of a sep-
arate directory infrastructure. Moreover, our network-level
approach allows storage capability to increase naturally with
network size, and exploits caching to forward data packets
directly to the destination without needing to traverse any
intermediate DHT hops [23, 24].

3.1 Scalable key-value management with a
one-hop DHT

Our distributed directory has two main parts. First, run-
ning a link-state protocol ensures each switch can observe
all other switches present in the network, and allows any
switch to route any other switch along shortest paths. Sec-
ond, SEATTLE uses a hash function to map host information
to a switch. This host information is maintained in the form
of (key,value). Specific examples of these key-value pairs are
(MAC address, location), and (IP address, MAC address).

3.1.1 Link-state protocol to maintain switch topology

SEATTLE enables shortest-path forwarding by running a
link-state protocol. However, distributing end-host informa-
tion in link-state advertisements, as advocated in previous
proposals [9, 7, 6, 8], would lead to serious scaling problems
in the large networks we consider here. Instead, SEATTLE’s
link-state protocol maintains only the switch-level topol-
ogy, which is much more compact and stable. SEATTLE
switches use the link-state information to compute shortest
paths for unicasting, and multicast trees for broadcasting.

To automate configuration of the link-state protocol,
SEATTLE switches run a discovery protocol to determine
which of their links are attached to hosts, and which are at-
tached to other switches. Distinguishing between these dif-
ferent kinds of links is done by sending control messages
that Ethernet hosts do not respond to. This process is simi-
lar to how Ethernet distinguishes switches from hosts when
building its spanning tree. To identify themselves in the
link-state protocol, SEATTLE switches determine their own
unique switch IDs without administrator involvement. For
example, each switch does this by choosing the MAC ad-
dress of one of its interfaces as its switch ID.

3.1.2 Hashing key-value pairs onto switches

Instead of disseminating per-host information in link-state
advertisements, SEATTLE switches learn this information
in an on-demand fashion, via a simple hashing mechanism.
This information is stored in the form of (key= k,value= v)
pairs. A publisher switch sa wishing to publish a (k, v) pair

Figure 1: Keys are consistently hashed onto resolver switches (si).

via the directory service uses a hash function F to map k

to a switch identifier F(k) = rk, and instructs switch rk

to store the mapping (k, v). We refer to rk as the resolver
for k. A different switch sb may then look up the value as-
sociated with k by using the same hash function to identify
which switch is k’s resolver. This works because each switch
knows all the other switches’ identifiers via link-state ad-
vertisements from the routing protocol, and hence F works
identically across all switches. Switch sb may then forward
a lookup request to rk to retrieve the value v. Switch sb

may optionally cache the result of its lookup, to reduce re-
dundant resolutions. All control messages, including lookup
and publish messages, are unicast with reliable delivery.
Reducing control overhead with consistent hashing: When
the set of switches changes due to a network failure or re-
covery, some keys have to be re-hashed to different resolver
switches. To minimize this re-hashing overhead, SEATTLE
utilizes Consistent Hashing [25] for F . This mechanism is
illustrated in Figure 1. A consistent hashing function maps
keys to bins such that the change of the bin set causes min-
imal churn in the mapping of keys to bins. In SEATTLE,
each switch corresponds a bin, and a host’s information cor-
responds to a key. Formally, given a set S = {s1, s2, ..., sn}
of switch identifiers, and a key k,

F(k) = argmin∀si∈S{D(H(k),H(si))}

where H is a regular hash function, and D(x, y) is a simple
metric function computing the counter-clockwise distance
from x to y on the circular hash-space of H. This means
F maps a key to the switch with the closest identifier not
exceeding that of the key on the hash space of H. As an op-
timization, a key may be additionally mapped to the next m

closest switches along the hash ring, to improve resilience
to multiple failures. However, in our evaluation, we will as-
sume this optimization is disabled by default.
Balancing load with virtual switches: The scheme de-
scribed so far assumes that all switches are equally pow-
erful, and hence low-end switches will need to service the
same load as more powerful switches. To deal with this,
we propose a new scheme based on running multiple virtual
switches on each physical switch. A single switch locally
creates one or more virtual switches. The switch may then
increase or decrease its load by spawning/destroying these
virtual switches. Unlike techniques used in traditional DHTs
for load balancing [24, 26], it is not necessary for our virtual
switches to be advertised to other physical switches. Instead
of advertising every virtual switch in the link-state proto-
col, switches only advertise the number of virtual switches
they are currently running. Each switch then locally com-
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Figure 2: Hierarchical SEATTLE hashes keys onto regions.

putes virtual switch IDs using the following technique. All
switches use the same function R(s, i) that takes as input a
switch identifier s and a number i, and outputs a new iden-
tifier unique to the inputs. A physical switch w only adver-
tises in link-state its own physical switch identifier sw and
the number L of virtual switches it is currently running. Ev-
ery switch can then determine the virtual identifiers of w by
computing R(sw, i) for 1 ≤ i ≤ L. Note that it is possible
to automate the process of determining a desirable number
of virtual switches per physical switch [26].
Enabling flexible service discovery: This design also en-
ables more flexible service discovery mechanisms without
the need to perform network-wide broadcasts. This is done
by utilizing the hash function F to map a string defining the
service to a switch. For example, a printer may hash the
string “PRINTER” to a switch, at which it may store its lo-
cation or address information. Other switches can then reach
the printer using the hash of the string. Services may also en-
code additional attributes, such as load or network location,
as simple extensions to the hash. Specific ways to describe
and name services on have been widely studied in previous
work and are out of scope of this paper [27].

3.2 Responding to topology changes
The switch-level topology may change if a new

switch/link is added to the network, an existing switch/link
fails, or a previously failed switch/link recovers. These fail-
ures may or may not partition the network into multiple
disconnected components. Link failures are typically more
common than switch failures, and partitions are very rare if
the network has sufficient redundancy.

In the case of a link failure/recovery that does not partition
a network, the set of switches appearing in the link-state map
does not change. Since the hash function F is defined with
the set of switches in the network, the resolver a particular
key maps to will not change. Hence all that needs to be done
is to update the link-state map to ensure packets continue
to traverse new shortest paths. In SEATTLE, this is simply
handled by the link-state routing protocol.

However, if a switch fails or recovers, the set of switches
in the link-state map changes. Hence there may be some
keys k whose old resolver rold

k differs from a new resolver
rnew
k . To deal with this, the value (k, v) must be moved from

rold
k to rnew

k . This is handled by having the switch sk that
originally published k monitor the liveness of k’s resolver
through link-state advertisements, and republishing (k, v) to
rnew
k when rnew

k differs from rold
k . The value (k, v) is even-

tually removed from rold
k after a timeout. Additionally, when

a value v denotes a location, such as a switch id s, and s

goes down, each switch scans the list of locally-stored (k, v)
pairs, and remove all entries whose value v equals s. Note
this procedure correctly handles network partitions because
the link-state protocol ensures that each switch will be able
to see only switches present in its partition.

3.3 Supporting hierarchy with a multi-level,
one-hop DHT

The SEATTLE design presented so far scales to large, dy-
namic networks [28]. However, since this design runs a
single, network-wide link-state routing protocol, it may be
inappropriate for networks with highly dynamic infrastruc-
ture, such as networks in developing regions [3]. A single
network-wide protocol may also be inappropriate if network
operators wish to provide stronger fault isolation across geo-
graphic regions, or to divide up administrative control across
smaller routing domains. Moreover, when a SEATTLE net-
work is deployed over a wide area, the resolver could lie far
both from the source and destination. Forwarding lookups
over long distances increases latency and makes the lookup
more prone to failure. To deal with this, SEATTLE may be
configured hierarchically, by leveraging a multi-level, one-
hop DHT. This mechanism is illustrated in Figure 2.

A hierarchical network is divided into several regions, and
a backbone providing connectivity across regions. Each re-
gion is connected to the backbone via its own border switch,
and the backbone is composed of the border switches of all
regions. Every switch in a region knows the identifier of the
region’s border switch, because the border switch advertises
its role through the link-state protocol. In such an environ-
ment, SEATTLE ensures that only inter-region lookups are
forwarded via the backbone while all regional lookups are
handled within their own regions, and link-state advertise-
ments are only propagated locally within regions. SEATTLE
ensures this by defining a separate regional and backbone
hash ring. When a (k, v) is inserted into a region P and is
published to a regional resolver rP

k (i.e., a resolver for k in
region P ), rP

k additionally forwards (k, v) to one of the re-
gion P ’s border switches bP . Then bP hashes k again onto
the backbone ring and publishes (k, v) to another backbone
switch b

Q
k , which is a backbone resolver for k and a bor-

der switch of region Q at the same time. Switch b
Q
k stores

k’s information. If a switch in region R wishes to lookup
(k, v), it forwards the lookup first to its local resolver rR

k ,
which in turn forwards it to bR, and bR forwards it to b

Q
k . As

an optimization to reduce load on border switches, b
Q
k may

hash k and store (k, v) at a switch within its own region Q,
rather than storing (k, v) locally. Since switch failures are
not propagated across regions, each publisher switch period-
ically sends probes to backbone resolvers that lie outside of
its region. To improve availability, (k, v) may be stored at
multiple backbone resolvers (as described in Section 3.1.2),
and multiple simultaneous lookups may be sent in parallel.

4. Scaling Ethernet with a One-hop DHT
The previous section described the design of a distributed
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Figure 3: Packet forwarding and lookup in SEATTLE.

network-level directory service based on a one-hop DHT. In
this section, we describe how the directory service is used to
provide efficient packet delivery and scalable address reso-
lution. We first briefly describe how to forward data pack-
ets to MAC addresses in Section 4.1. We then describe our
remaining contributions: an optimization that eliminate the
need to look up host location in the DHT by piggy-backing
that information on ARP requests in Section 4.2, and a scal-
able dynamic cache-update protocol in Section 4.3.

4.1 Host location resolution
Hosts use the directory service described in Section 3

to publish and maintain mappings between their MAC ad-
dresses and their current locations. These mappings are used
to forward data packets, using the procedure shown in Fig-
ure 3. When a host a with MAC address maca first arrives
at its access switch sa, the switch must publish a’s MAC-to-
location mapping in the directory service. Switch sa does
this by computing F(maca) = ra, and instructing ra to
store (maca, sa). We refer to ra as the location resolver
for a. Then, if some host b connected to switch sb wants
to send a data packet to maca, b forwards the data packet
to sb, which in turn computes F(maca) = ra. Switch sb

then and forwards the packet to ra. Since ra may be several
hops away, sb encapsulates the packet with an outer header
with ra’s address as the destination. Switch ra then looks
up a’s location sa, and forwards the packet on towards sa.
In order to limit the number of data packets traversing the
resolver, ra also notifies sb that a’s current location is sa.
Switch sb then caches this information. While forwarding
the first few packets of a flow via a resolver switch increases
path lengths, in the next section we describe an optimization
that allows data packets to traverse only shortest paths, by
piggy-backing location information on ARP replies.

Note SEATTLE manages per-host information via re-
active resolution, as opposed to the proactive dissemi-
nation scheme used in previous approaches [9, 7, 6].
The scaling benefits of this reactive resolution increase
in enterprise/data-center/access provider networks because
most hosts communicate with a small number of popular
hosts, such as mail/file/Web servers, printers, VoIP gate-
ways, and Internet gateways [5]. To prevent forwarding ta-
bles from growing unnecessarily large, the access switches
can apply various cache-management policies. For correct-
ness, however, the cache-management scheme must not evict
the host information of the hosts that are directly connected
to the switch or are registered with the switch for resolution.

Unlike Ethernet bridging, cache misses in SEATTLE do not
lead to flooding, making the network resistant to cache poi-
soning attacks (e.g., forwarding table overflow attack) or a
sudden shift in traffic. Moreover, those switches that are
not directly connected to end hosts (i.e., aggregation or core
switches) do not need to maintain any cached entries.

4.2 Host address resolution
In conventional Ethernet, a host with an IP packet first

broadcasts an ARP request to look up the MAC address of
the host owning the destination IP address contained in the
request. To enhance scalability, SEATTLE avoids broadcast-
based ARP operations. In addition, we extend ARP to return
both the location and the MAC address of the end host to
the requesting switch. This allows data packets following an
ARP query to directly traverse shortest paths.

SEATTLE replaces the traditional broadcast-based ARP
with an extension to the one-hop DHT directory service. In
particular, switches use F with an IP address as the key.
Specifically, when host a arrives at access switch sa, the
switch learns a’s IP address ipa (using techniques described
in Section 5.1), and computes F(ipa) = va. The result of
this computation is the identifier of another switch va. Fi-
nally, sa informs va of (ipa, maca). Switch va, the address
resolver for host a, then uses the tuple to handle future ARP
requests for ipa redirected by other remote switches. Note
that host a’s location resolver (i.e., F(maca)) may differ
from a’s address resolver (i.e., F(ipa)).
Optimizing forwarding paths via ARP: For hosts that issue
an ARP request, SEATTLE eliminates the need to perform
forwarding via the location resolver as mentioned in Sec-
tion 4.1. This is done by having the address resolver switch
va also maintain the location of a (i.e., sa) in addition to
maca. Upon receiving an ARP request from some host b,
the address resolver va returns both maca and sa back to b’s
access switch sb. Switch sb then caches sa for future packet
delivery, and returns maca to host b. Any packets sent by b

to a are then sent directly along the shortest path to a.
It is, however, possible that host b already has maca in

its ARP cache and immediately sends data frames destined
to maca without issuing an ARP request in advance. Even
in such a case, as long as the sb also maintains a’s loca-
tion associated with maca, sb can forward those frames cor-
rectly. To ensure access switches cache the same entries as
hosts, the timeout value that an access switch applies to the
cached location information must be larger than the ARP
cache timeout used by end hosts 2. Note that, even if the
cache and the host become out of sync (due to switch re-
boot, etc.), SEATTLE continues to operate correctly because
switches can resolve a host’s location by hashing the host’s
MAC address to the host’s location resolver.

4.3 Handling host dynamics
Hosts can undergo three different kinds of changes in a

SEATTLE network. First, a host may change location, for
2The default setting of the ARP cache timeout in most common operating
systems ranges 10 to 20 minutes.
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example if it has physically moved to a new location (e.g.,
wireless handoff), if its link has been plugged into a different
access switch, or if it is a virtual machine and has migrated to
a new hosting system that allows the VM to retain its MAC
address. Second, a host may change its MAC address, for
example if its NIC card is replaced, if it is a VM and has mi-
grated to a new hosting system that requires the VM to use
the host’s MAC address, or if multiple physical machines
collectively acting as a single server or router (to ensure high
availability) experience a fail-over event [29]. Third, a host
may change its IP address, for example if a DHCP lease ex-
pires, or if the host is manually reconfigured. In practice,
multiple of these changes may occur simultaneously. When
these changes occur, we need to keep the directory service
up-to-date, to ensure correct packet delivery.

SEATTLE handles these changes by modifying the con-
tents of the directory service via insert, delete, and update
operations. An insert operation adds a new (k, v) pair to the
DHT, a delete operation removes a (k, v) pair from the DHT,
and the update operation updates the value v associated with
a given key k. First, in the case of a location change, the host
h moves from one access switch sold

h to another snew
h . In this

case, snew
h inserts a new MAC-to-location entry. Since h’s

MAC address already exists in the DHT, this action will up-
date h’s old location with its new location. Second, in the
case of a MAC address change, h’s access switch sh inserts
an IP-to-MAC entry containing h’s new MAC address, caus-
ing h’s old IP-to-MAC mapping to be updated. Since a MAC
address is also used as a key of a MAC-to-location mapping,
sh deletes h’s old MAC-to-location mapping and inserts a
new mapping, respectively with the old and new MAC ad-
dresses as keys. Third, in the case of an IP address change,
we need to ensure that future ARP requests for h’s old IP
address are no longer resolved to h’s MAC address. To en-
sure this, sh deletes h’s old IP-to-MAC mapping and insert
the new one. Finally, if multiple changes happen at once, the
above steps occur simultaneously.
Ensuring seamless mobility: As an example, consider
the case of a mobile host h moving between two access
switches, sold

h and snew
h . To handle this, we need to up-

date h’s MAC-to-location mapping to point to its new loca-
tion. As described in Section 4.1, snew

h inserts (mach, snew
h )

into rh upon arrival of h. Note that the location resolver
rh selected by F(mach) does not change when h’s location
changes. Meanwhile, sold

h deletes (mach, sold
h ) when it de-

tects h is unreachable (either via timeout or active polling).
Additionally, to enable prompt removal of stale information,
the location resolver rh informs sold

h that (mach, sold
h ) is ob-

soleted by (mach, snew
h ).

However, host locations cached at other access switches
must be kept up-to-date as hosts move. SEATTLE takes
advantage of the fact that, even after updating the informa-
tion at rh, sold

h may receive packets destined to h because
other access switches in the network might have the stale
information in their forwarding tables. Hence, when sold

h

receives packets destined to h, it explicitly notifies ingress
switches that sent the misdelivered packets of h’s new lo-

cation snew
h . To minimize service disruption, sold

h also for-
wards those misdelivered packets snew

h .
Updating remote hosts’ caches: In addition to updating con-
tents of the directory service, some host changes require in-
forming other hosts in the system about the change. For ex-
ample, if a host h changes its MAC address, the new map-
ping (iph, macnew

h ) must be immediately known to other
hosts who happened to store (iph, macold

h ) in their local
ARP caches. In conventional Ethernet, this is achieved by
broadcasting a gratuitous ARP request originated by h [30].
A gratuitous ARP is an ARP request containing the MAC
and IP address of the host sending it. This request is not
a query for a reply, but is instead a notification to update
other end hosts’ ARP tables and to detect IP address con-
flicts on the subnet. Relying on broadcast to update other
hosts clearly does not scale to large networks. SEATTLE
avoids this problem by unicasting gratuitous ARP packets
only to hosts with invalid mappings. This is done by having
sh maintain a MAC revocation list. Upon detecting h’s MAC
address change, switch sh inserts (iph, macold

h , macnew
h ) in

its revocation list. From then on, whenever sh receives a
packet whose source or destination (IP, MAC) address pair
equals (iph, macold

h ), it sends a unicast gratuitous ARP re-
quest containing (iph, macnew

h ) to the source host which
sent those packets. Note that, when both h’s MAC address
and location change at the same time, the revocation infor-
mation is created at h’s old access switch by h’s address re-
solver vh = F(iph).

To minimize service disruption, sh also delivers the mis-
addressed packets to h by rewriting the destination to
macnew

h . Additionally, sh also informs the source host’s
ingress switch of (macnew

h , sh) so that the packets destined
to macnew

h can then be directly delivered to sh, avoiding
an additional location lookup. Note this approach to updat-
ing remote ARP caches does not require sh to look up each
packet’s IP and MAC address pair from the revocation list
because sh can skip the lookup in the common case (i.e.,
when its revocation list is empty). Entries from the revoca-
tion list are removed after a timeout set equal to the ARP
cache timeout of end hosts.

5. Providing Ethernet-like Semantics
To be fully backwards-compatible with conventional Eth-

ernet, SEATTLE must act like a conventional Ethernet from
the perspective of end hosts. First, the way that hosts in-
teract with the network to bootstrap themselves (e.g., ac-
quire addresses, allow switches to discover their presence)
must be the same as Ethernet. Second, switches have to sup-
port traffic that uses broadcast/multicast Ethernet addresses
as destinations. In this section, we describe how to perform
these actions without incurring the scalability challenges of
traditional Ethernet. For example, we propose to eliminate
broadcasting from the two most popular sources of broadcast
traffic: ARP and DHCP. Since we described how SEATTLE
switches handle ARP without broadcasting in Section 4.2,
we discuss only DHCP in this section.
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5.1 Bootstrapping hosts

Host discovery by access switches: When an end host arrives
at a SEATTLE network, its access switch needs to discover
the host’s MAC and IP addresses. To discover a new host’s
MAC address, SEATTLE switches use the same MAC learn-
ing mechanism as conventional Ethernet, except that MAC
learning is enabled only on the ports connected to end hosts.
To learn a new host’s IP address or detect an existing host’s
IP address change, SEATTLE switches snoop on gratuitous
ARP requests. Most operating systems generate a gratuitous
ARP request when the host boots up, the host’s network in-
terface or links comes up, or an address assigned to the in-
terface changes [30]. If a host does not generate a gratuitous
ARP, the switch can still learn of the host’s IP address via
snooping on DHCP messages, or sending out an ARP re-
quest only on the port connected to the host. Similarly, when
an end host fails or disconnects from the network, the access
switch is responsible for detecting that the host has left, and
deleting the host’s information from the network.
Host configuration without broadcasting: For scalability,
SEATTLE resolves DHCP messages without broadcasting.
When an access switch receives a broadcast DHCP discov-
ery message from an end host, the switch delivers the mes-
sage directly to a DHCP server via unicast, instead of broad-
casting it network-wide. SEATTLE implements this mech-
anism using the existing DHCP relay agent standard [31].
This standard is used when an end host needs to commu-
nicate with a DHCP server outside the host’s broadcast do-
main. The standard proposes that a host’s IP gateway for-
ward a DHCP discovery to a DHCP server via IP routing.
In SEATTLE, a host’s access switch can perform the same
function with Ethernet encapsulation. Access switches can
discover a DHCP server using the service discovery mech-
anism described in Section 3.1.2. For example, the DHCP
server hashes the string “DHCP SERVER” to a switch, and
then stores its location at that switch. Other switches then
forward DHCP requests using the hash of the string.

5.2 Scalable and flexible VLANs
SEATTLE completely eliminates flooding of unicast

packets. However, to offer the same semantics as Ether-
net bridging, SEATTLE needs to support transmission of
packets sent to a broadcast address. Supporting broadcast-
ing is important because some applications (e.g., IP multi-
cast, peer-to-peer file sharing programs, etc.) rely on subnet-
wide broadcasting. However, in large networks to which our
design is targeted, performing broadcasts in the same style
as Ethernet may significantly overload switches and reduce
data plane efficiency. Instead, SEATTLE provides a mecha-
nism which is similar to, but more flexible than, VLANs.

In particular, SEATTLE introduces a notion of group.
Similar to a VLAN, a group is defined as a set of hosts who
share the same broadcast domain regardless of their loca-
tion. Unlike Ethernet bridging, however, a broadcast do-
main in SEATTLE does not limit unicast layer-2 reachabil-
ity between hosts because a SEATTLE switch can resolve

any host’s address or location without relying on broadcast-
ing. Thus, groups provide several additional benefits over
VLANs. First, groups do not need to be manually assigned
to switches. A group is automatically extended to cover
a switch as soon as a member of that group arrives at the
switch3. Second, a group is not forced to correspond to a
single IP subnet, and hence may span multiple subnets or a
portion of a subnet, if desired. Third, unicast reachability
in layer-2 between two different groups may be allowed (or
restricted) depending on the access-control policy — a rule
set defining which groups can communicate with which —
between the groups.

The flexibility of groups can ensure several benefits that
are quite hard to achieve with conventional Ethernet bridg-
ing and VLANs. For example, when a group is aligned
with a subnet, and unicast reachability between two differ-
ent groups is not permitted by default, groups provide ex-
actly the same functionality as VLANs. However, groups
can include a large number of end hosts and can be ex-
tended to anywhere in the network without harming control-
plane scalability and data-plane efficiency. Moreover, when
groups are defined as subsets of an IP subnet, and inter-
group reachability is prohibited, each group is equivalent to
a private VLAN (PVLAN), which are popularly used in ho-
tel/motel networks [33]. Unlike PVLANs, however, groups
can be extended over multiple bridges. Finally, when uni-
cast reachability between two groups is permitted, traffic be-
tween the groups takes the shortest path, without needing to
traverse an IP gateway.
Multicast-based group-wide broadcasting: All broadcast
packets within a group are delivered through a multicast tree
sourced at a dedicated switch, namely a broadcast root, of
the group. The mapping between a group and its broadcast
root is determined by using F to hash the group’s identifier
to a switch. Construction of the multicast tree is done in a
manner similar to IP multicast, inheriting its safety (i.e., loop
freedom) and efficiency (i.e., to receive broadcast only when
necessary). When a switch first detects an end host that is
a member of group g, the switch issues a join message that
is carried up to the nearest graft point on the tree toward g’s
broadcast root. When a host departs, its access switch prunes
a branch if necessary. Finally, when an end host in g sends a
broadcast packet, its access switch marks the packet with g

and forwards it along g’s multicast tree.
Separating unicast reachability from broadcast domains:
In addition to handling broadcast traffic, groups in SEAT-
TLE also provide a namespace upon which reachability poli-
cies for unicast traffic are defined. When a host arrives at an
access switch, the host’s group membership is determined by
its access switch and published to the host’s resolvers along
with its location information. Access control policies are
then applied by a resolver when a host attempts to look up a
destination host’s information.

3The way administrators associate a host with corresponding group is be-
yond the scope of this paper. For Ethernet, management systems that can
automate this task (e.g., mapping an end host or flow to a VLAN) are al-
ready available [17, 32], and SEATTLE can employ the same model.
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Figure 4: (a) Effect of cache timeout in AP-large with 50K hosts (b) Table size increase in DC (b) Control overhead in AP-large.

6. Simulations
In this section, we start by describing our simulation en-

vironment. Next, we describe SEATTLE’s performance un-
der workloads collected from several real operational net-
works. We then investigate SEATTLE’s performance in dy-
namic environments by generating host mobility and topol-
ogy changes.

6.1 Methodology
To evaluate the performance of SEATTLE, we would ide-

ally like to have several pieces of information, including
complete layer-two topologies from a number of represen-
tative enterprises and access providers, traces of all traffic
sent on every link in their topologies, the set of hosts at
each switch/router in the topology, and a trace of host move-
ment patterns. Unfortunately, network administrators (un-
derstandably) were not able to share this detailed informa-
tion with us due to privacy concerns and also because ad-
ministrators typically do not log events on such large scales.
To deal with this, we leveraged real traces where possible,
and supplemented them with synthetic traces. To generate
the synthetic traces, we made realistic assumptions about
workload characteristics, and varied these characteristics to
measure the sensitivity of SEATTLE to our assumptions.

In our packet-level simulator, we replayed packet traces
collected from the Lawrence Berkeley National Lab cam-
pus network by Pang et. al. [34]. There are four sets of
traces, each collected over a period of 10 to 60 minutes,
containing traffic to and from roughly 9,000 end hosts dis-
tributed over 22 different subnets. To evaluate sensitivity
of SEATTLE to network size, we artificially injected ad-
ditional hosts into the trace. We did this by creating a set
of virtual hosts, which communicated with a set of random
destinations, while preserving the distribution of destination-
level popularity of the original traces. We also tried injecting
MAC scanning attacks and artificially increasing the rate at
which hosts send [18].

We measured SEATTLE’s performance on four repre-
sentative topologies. Campus is the campus network of
a large (roughly 40,000 students) university in the United
States, containing 517 routers and switches. AP-small (AS
3967) is a small access provider network consisting of 87
routers, and AP-large (AS 1239) is a larger network with
315 routers [35]. Because SEATTLE switches are intended

to replace both IP routers and Ethernet bridges, the routers in
these topologies are considered as SEATTLE switches in our
evaluation. To investigate a wider range of environments, we
also constructed a model topology called DC, which repre-
sents a typical data center network composed of four full-
meshed core routers each of which is connected to a mesh of
twenty one aggregation switches. This roughly characterizes
a commonly-used topology in data centers [1].

Our topology traces were anonymized, and hence lack
information about how many hosts are connected to each
switch. To deal with this, we leveraged CAIDA Skitter
traces [36] to roughly characterize this number for networks
reachable from the Internet. However, since the CAIDA skit-
ter traces form a sample representative of the wide-area, it is
not clear whether they apply to the smaller-scale networks
we model. Hence for DC and Campus, we assume that hosts
are evenly distributed across leaf-level switches.

Given a fixed topology, the performance of SEATTLE and
Ethernet bridging can vary depending on traffic patterns. To
quantify this variation we repeated each simulation run 25
times, and plot the average of these runs with 99% confi-
dence intervals. For each run we vary a random seed, caus-
ing the number of hosts per switch, and the mapping between
hosts and switches to change. Additionally for the cases of
Ethernet bridging, we varied spanning trees by randomly se-
lecting one of the core switches as a root bridge. Our simu-
lations assume that all switches are part of the same broad-
cast domain. However, since our traffic traces are captured
in each of the 22 different subnets (i.e., broadcast domains),
the traffic patterns among the hosts preserve the broadcast
domain boundaries. Thus, our simulation network is equiva-
lent to a VLAN-based network where a VLAN corresponds
to an IP subnet, and all non-leaf Ethernet bridges are trunked
with all VLANs to enhance mobility.

6.2 Control-plane Scalability

Sensitivity to cache eviction timeout: SEATTLE caches
host-information to route packets via shortest paths and to
eliminate redundant resolutions. If a switch removes a host-
information entry before a locally attached host does (from
its ARP cache), the switch will need to perform a location
lookup to forward data packets sent by the host. To elim-
inate the need to queue data packets at the ingress switch,
those packets are forwarded through a location resolver,
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Figure 5: (a) Stretch across different cache sizes in AP-large with 10K hosts (b) Path stability (c) Effect of switch failures in DC.

leading to a longer path. To evaluate this effect, we sim-
ulated a forwarding table management policy for switches
that evicts unused entries after a timeout. Figure 4a shows
performance of this strategy across different timeout values
in the AP-large network. First, the fraction of packets that
require data-driven location lookups (i.e., location lookups
apart from those piggy-backed on ARP) is very low and de-
creases quickly with larger timeout. Even for a very small
timeout value of 60 seconds, more than 99.98% of pack-
ets are forwarded without a data-driven location lookup. We
also confirmed that the number of data packets forwarded via
location resolvers drops to zero when using timeout values
larger than 600 seconds (i.e., roughly equal to the ARP cache
timeout at end hosts). The figure also shows that the con-
trol overhead to maintain the directory decreases very fast,
whereas the amount of state kept at each switch increases
moderately with larger timeout. Hence, in a network with
properly configured hosts and reasonably small (e.g., less
than 2% of the total number of hosts in this topology) for-
warding tables at switches, SEATTLE offers shortest paths
to all packets.
Forwarding table size: Figure 4b shows the amount of
state per switch in the DC topology. To quantify the
cost of ingress caching, we show SEATTLE’s table size
with and without caching (SEA CA and SEA NOCA respec-
tively). Ethernet requires more state than SEATTLE without
caching, because Ethernet stores active hosts’ information
entries at almost every bridge. In a network with s switches
and h hosts, each Ethernet bridge must store an entry for
each destination, resulting in O(sh) state across the network.
SEATTLE requires only O(h) state since only the access
and resolver switches need to store location information for
each host. In this particular topology, SEATTLE reduces
forwarding-table size by roughly a factor of 22. Although
not shown here due to space constraints, we find that these
gains increase to a factor of 64 in AP-large because there are
a larger number of switches in that topology. While the use
of caching drastically reduces the number of redundant lo-
cation resolutions, we can see that it increases SEATTLE’s
forwarding-table size by roughly a factor of 1.5. However,
even with this penalty, SEATTLE reduces table size com-
pared with Ethernet by roughly a factor of 16. This value
increases to a factor of 41 in AP-large.
Control overhead: Figure 4c shows the amount of control

overhead generated by SEATTLE and Ethernet. We com-
puted this value by dividing the total number of control
messages over all links in the topology by the number of
switches, then dividing by the duration of the trace. SEAT-
TLE significantly reduces control overhead as compared to
Ethernet. This happens because Ethernet generates network-
wide floods for a significant number of packets, while SEAT-
TLE leverages unicast to disseminate host location. Here
we again observe that use of caching degrades performance
slightly. Specifically, the use of caching (SEA CA) increases
control overhead roughly from 0.1 to 1 packet per second
as compared to SEA NOCA in a network containing 30K

hosts. However, SEA CA’s overhead still remains a fac-
tor of roughly 1000 less than that of Ethernet. In general,
we found that the difference in control overhead increased
roughly with the number of links in the topology.
Comparison with id-based routing approaches: We imple-
mented the ROFL, UIP, and VRR protocols in our simula-
tor. To ensure a fair comparison, we used a link-state proto-
col to construct vset-paths [16] along shortest paths in UIP
and VRR, and created a UIP/VRR node at a switch for each
end host the switch is attached to. Performance of UIP and
VRR was quite similar to performance of ROFL with an un-
bounded cache size. Figure 5a shows the average relative
latency penalty, or stretch, of SEATTLE and ROFL [14] in
the AP-large topology. We measured stretch by dividing the
time the packet was in transit by the delay along the short-
est path through the topology. Overall, SEATTLE incurs
smaller stretch than ROFL. With a cache size of 1000, SEAT-
TLE offers a stretch of roughly 1.07, as opposed to ROFL’s
4.9. This happens because i) when a cache miss occurs,
SEATTLE resolves location via a single-hop rather than a
multi-hop lookup, and ii) SEATTLE’s caching is driven by
traffic patterns, and hosts in an enterprise network typically
communicate with only a small number of popular hosts.
Note that SEATTLE’s stretch remains below 5 even when
a cache size is 0. Hence, even with the worst-case traffic
patterns (e.g., the case where every host communicates with
all other hosts, and switches maintain very small caches),
SEATTLE can still ensure reasonably small stretch. Finally,
we compare path stability with ROFL in Figure 5b. We vary
the rate at which hosts leave and join the network, and mea-
sure path stability as the number of times a flow changes its
path (the sequence of switches it traverses) in the presence of
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Figure 6: Effect of host mobility in Campus.

host churn. We find that ROFL has over three orders of mag-
nitude more path changes than SEATTLE across a variety of
churn rates.

6.3 Sensitivity to network dynamics

Effect of network changes: Figure 5c shows performance
during switch failures. Here, we cause switches to fail ran-
domly, with failure inter-arrival times drawn from a Pareto
distribution with α = 2.0 varying mean values. Switch re-
covery inter-arrival time is also drawn from the same distri-
bution, with an average of 30 seconds. We found SEATTLE
is able to deliver a larger fraction of packets than Ethernet.
This happens because SEATTLE is able to use all links in
the topology to forward packets, while Ethernet can only
forward over a spanning tree. Additionally, after a switch
failure, Ethernet must recompute this tree, which causes out-
ages until the process completes. Although forwarding traf-
fic through a location resolver in SEATTLE causes a flow’s
fate to be shared with a larger number of switches, we found
that availability remained higher than that of Ethernet. Ad-
ditionally, the use of caching improved availability further.
Effect of host mobility: To investigate the effect of physical
or virtual host mobility on SEATTLE performance, we ran-
domly move hosts between access switches. We drew mobil-
ity times from a Pareto distribution with α = 2.0 and varying
inter-arrival times. For high mobility rates, we found SEAT-
TLE’s loss rate was lower than that of Ethernet, as shown
in Figure 6. This happens because when a host moves in
Ethernet, it takes some time for switches to evict the stale
location information, and re-learn the host’s new location.
Although some host operating systems broadcast gratuitous
ARP when a host moves, this increases broadcast overhead.
In contrast, SEATTLE provides both low loss and broadcast
overhead by relying on unicast to update host state.

7. Implementation
To verify SEATTLE’s performance and practicality

through a real deployment, we built a prototype SEATTLE
switch using two open-source routing software platforms:
user-level Click [37] and XORP [38]. We also implemented
a second version of our prototype using kernel-level Click.
Section 7.1 describes the structure of our design, and Sec-
tion 7.2 presents results from a performance evaluation.

7.1 Prototype design

Figure 7: Implementation architecture.

Figure 7 shows the overall structure of our implementa-
tion. SEATTLE’s control plane is divided into two func-
tional modules: i) maintaining the switch-level topology,
and ii) managing end-host information. We used XORP to
realize the first functional module, and used Click to im-
plement the second. We also extended Click to implement
SEATTLE’s data-plane functions, including consistent hash-
ing and packet encapsulation. Our control and data plane
modifications to Click are implemented as the SeattleSwitch
element shown in Figure 7.
SEATTLE control plane: First, we run a XORP OSPF pro-
cess at each switch to maintain a complete switch-level net-
work map. The XORP RIBD (Routing Information Base
Daemon) constructs its routing table using this map. RIBD
then installs the routing table into the forwarding plane pro-
cess, which we implement with Click. Click uses this ta-
ble, namely NextHopTable, to determine a next hop. The
FEA (Forwarding Engine Abstraction) in XORP handles
inter-process communication between XORP and Click. To
maintain host information, a SeattleSwitch utilizes a Host-
LocTable, which is populated with three kinds of host infor-
mation: (a) the outbound port for every local host; (b) the
location for every remote host for which this switch is a re-
solver; and (c) the location for every remote host cached via
previous lookups. For each insertion or deletion of a locally-
attached host, the switch generates a corresponding regis-
tration or deregistration message. Additionally, by monitor-
ing the changes of the NextHopTable, the switch can detect
whether the topology has changed, and host re-registration is
required accordingly. To maintain IP-to-MAC mappings to
support ARP, a switch also maintains a separate table in the
control plane. This table contains only the information of lo-
cal hosts and remote hosts that are specifically hashed to the
switch. When our prototype switch is first started up, a sim-
ple neighbor-discovery protocol is run to determine which
interfaces are connected to other switches, and over each of
these interfaces it initiates an OSPF session. The link weight
associated with the OSPF adjacency is by default set to be
the link latency. If desired, another metric may be used.
SEATTLE data plane: To forward packets, an ingress
switch first learns an incoming packet’s source MAC ad-
dress, and if necessary, adds the corresponding entry in Host-
LocTable. Then the switch looks up the destination MAC
address in the HostLocTable and checks to see if i) the host
is locally attached, ii) the host is remote, and its location
is cached, or iii) the host is explicitly registered with the
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switch. In the case of iii) the switch needs to send a host
location notification to the ingress. In all cases, the switch
then forwards the packet either to the locally attached des-
tination, or encapsulates the packet and forwards it to the
next hop toward the destination. Intermediate switches can
then simply forward the encapsulated packet by looking up
the destination in their NextHopTables. In addition, if the
incoming packet is an ARP request, the ingress switch exe-
cutes the hash function F to look up the corresponding re-
solver’s id, and re-writes the destination to that id, and de-
livers the packet to the resolver for resolution.

7.2 Experimental results
In this section we report performance results from a de-

ployment of our prototype implementation on Emulab. To
ensure correctness, we cross-validated the simulator and im-
plementation with various traces and topologies, and found
out that average stretch, control overhead, and table size
from implementation results were within 3% of the values
given by the simulator. Below, we first present a set of mi-
crobenchmarks to evaluate per-packet processing overheads.
Then, to evaluate dynamics of a SEATTLE network, we
measure control overhead and switch state requirements, and
evaluate switch fail-over performance.
Packet processing overhead: Table 1 shows the per-packet
processing time for both SEATTLE and Ethernet. We mea-
sure this as the time from when a packet enters the switch’s
inbound queue, to the time it is ready to be moved to an out-
bound queue. We break this time down into the major com-
ponents. From the table, we can see that an ingress switch in
SEATTLE requires more processing time than in Ethernet.
This happens because the ingress switch has to encapsulate
a packet and then look up the next-hop table with the outer
header. However, SEATTLE requires less packet process-
ing overhead than Ethernet at other hops on a path except
an ingress. Hence, SEATTLE requires less overall process-
ing time on paths longer than 3.03 switch-level hops. As a
comparison point, we found the average number of switch-
level hops between hosts in a real university campus network
(Campus) to be over 4 for the vast majority of host pairs. Us-
ing our kernel-level implementation of SEATTLE, we were
able to fully saturate a 1 Gbps link.

Table 1: Per-packet processing time in micro-sec.

learn look-up encap look-up Total
src host tbl nexthop tbl

SEA-ingress 0.61 0.63 0.67 0.62 2.53
SEA-egress - 0.63 - - 0.63
SEA-others - - - 0.67 0.67

ETH 0.63 0.64 - - 1.27

Effect of network dynamics: To evaluate the dynamics of
SEATTLE and Ethernet, we instrumented the switch’s inter-
nal data structures to periodically measure performance in-
formation. Figures 8a and 8b show forwarding-table size and
control overhead, respectively, measured over one-second
intervals. We can see that SEATTLE has much lower con-
trol overhead when the systems are first started up. How-
ever, SEATTLE’s performance advantages do not come from
cold-start effects, as it retains lower control overhead even

after the system converges. As a side note, the forwarding-
table size in Ethernet is not drastically larger than that of
SEATTLE in this experiment because we are running on
a small four node topology. However, since the topology
has ten links (including links to hosts), Ethernet’s control
overhead remains substantially higher. Additionally, we
also investigate performance by injecting host scanning at-
tacks [18] into the real traces we used for evaluation. Fig-
ure 8b includes the scanning incidences occurred at around
300 and 600 seconds, each of which involves a single host
scanning 5000 random destinations that do not exist in the
network. In Ethernet, every scanning packet sent to a desti-
nation generates a network-wide flood because the destina-
tion is not existing, resulting in sudden peaks on it’s control
overhead curve. In SEATTLE, each scanning packet gener-
ates one unicast lookup (i.e., the scanning data packet itself)
to a resolver, which then discards the packet.
Fail-over performance: Figure 8c shows the effect of switch
failure. To evaluate SEATTLE’s ability to quickly republish
host information, here we intentionally disable caching, in-
duce failures of the resolver switch, and measure throughput
of TCP when all packets are forwarded through the resolver.
We set the OSPF hello interval to 1 second, and dead inter-
val to 3 seconds. After the resolver fails, there is some con-
vergence delay before packets are sent via the new resolver.
We found that SEATTLE restores connectivity quickly, typ-
ically on the order of several hundred milliseconds after the
dead interval. This allows TCP to recover within several sec-
onds, as shown in Figure 8c-i. We found performance during
failures could be improved by having the access switch reg-
ister hosts with the next switch along the ring in advance,
avoiding an additional re-registration delay. When a switch
is repaired, there is also a transient outage while routes move
back over to the new resolver, as shown in Figure 8c-ii. In
particular, we were able to improve convergence delay dur-
ing recoveries by letting switches continue to forward pack-
ets through the old resolver for a grace period. In general,
optimizing an Ethernet network to attain low convergence
delay (e.g., a few seconds) exposes the network to a high
chance of broadcast storms, making it nearly impossible to
realize in a large network.

8. Conclusion
Operators today face significant challenges in managing

and configuring large networks. Many of these problems
arise from the complexity of administering IP networks. Tra-
ditional Ethernet is not a viable alternative (except perhaps in
small LANs) due to poor scaling and inefficient path selec-
tion. We believe that SEATTLE takes an important first step
towards solving these problems, by providing scalable self-
configuring routing. Our design provides effective protocols
to discover neighbors and operates efficiently with its default
parameter settings. Hence, in the simplest case, network ad-
ministrators do not need to modify any protocol settings.
However, SEATTLE also provides add-ons for administra-
tors who wish to customize network operation. Experiments
with our initial prototype implementation show that SEAT-
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Figure 8: Effect of network dynamics: (a) table size (b) control overhead (c) failover performance.

TLE provides efficient routing with low latency, quickly re-
covers after failures, and handles host mobility and network
churn with low control overhead.

Moving forward, we are interested in investigating the de-
ployability of SEATTLE. We are also interested in ramifica-
tions on switch architectures, and how to design switch hard-
ware to efficiently support SEATTLE. Finally, to ensure de-
ployability, this paper assumes Ethernet stacks at end hosts
are not modified. It would be interesting to consider what
performance optimizations are possible if end host software
can be changed.
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