Host Identity Protocol Prof. Sasu Tarkoma

23.02.2009

Part of the material is based on lecture slides by Dr. Pekka Nikander (HIP) and Dmitrij Lagutin (PLA)

Contents

- Introduction
- Current state
- Host Identity Protocol (HIP)
- Overlays (i3 and Hi3)
- Summary

Introduction

- Current Internet is increasingly data and content centric
- The protocol stack may not offer best support for this
- End-to-end principle is no longer followed
 - Firewalls and NAT boxes
 - Peer-to-peer and intermediaries
- Ultimately, hosts are interested in receiving valid and relevant information and do not care about IP addresses or host names
- This motivate the design and development of new data and content centric networking architectures
 - Related work includes ROFL, DONA, TRIAD, FARA, AIP, ..

The Internet has Changed

- A lot of the assumptions of the early Internet has changed
 - Trusted end-points
 - Stationary, publicly addressable addresses
 - End-to-End
- We will have a look at these in the light of recent developments
- End-to-end broken by NATs and firewalls

HTTPS, S/MIME, PGP, WS-Security, Radius, Diameter, SAML 2.0 ..

Current State

Observations

End-to-end reachability is broken Unwanted traffic is a problem Mobility and multi-homing are challenging Multicast is difficult (does not scale) Security is difficult

Not optimal fit for broadcast and all-optical networking

What is HIP?

- •HIP = Host Identity Protocol
- A proposal to separate identifier from locator at the network layer of the TCP/IP stack
 - A new name space of public keys
 - A protocol for discovering and authenticating bindings between public keys and IP addresses
- Secured using signatures and keyed hashes (hash in combination with a secret key)

Motivation

Not to standardise a solution to a problem

- No explicit problem statement
- Exploring the consequences of the id / loc split
 - Try it out in real life, in the live Internet
- A different look at many problems
 - Mobility, multi-homing, end-to-end security, signalling, control/data plane separation, rendezvous, NAT traversal, firewall security, ...

HIP in a Nutshell

Architectural change to TCP/IP structure

- Integrates security, mobility, and multi-homing
 - Opportunistic host-to-host IPsec ESP
 - End-host mobility, across IPv4 and IPv6
 - End-host multi-address multi-homing, IPv4/v6
 - IPv4 / v6 interoperability for apps
- •A new layer between IP and transport
 - Introduces cryptographic Host Identifiers

The Idea

- A new Name Space of Host Identifiers (HI)
 - -Public crypto keys!
 - Presented as 128-bit long hash values, Host ID Tags (HIT)
- Sockets bound to HIs, not to IP addresses
- His translated to IP addresses in the kernel

Protocol overview

Initiator

Responder

Control

Data

I1: HIT_{I} , HIT_{R} or NULL

R1: HIT, [HIT, puzzle, DH, HI]

I2: $[HIT_{I}, HIT_{R}, solution, DH_{I}, \{HI_{I}\}]_{sig}$

R2: [HIT_I, HIT_R, authenticator]_{sig}

User data messages

Other Core Components

- Per-packet identity context
 - Indirectly, through SPI if ESP is used
 - Directly, e.g., through an explicit shim header
- A mechanism for resolving identities to addresses
 - DNS-based, if FQDNs used by applications
 - Or distributed hash tables (DHTs) based

Using HIP with ESP

Many Faces

More established views:

- A different IKE for simplified end-to-end ESP
- Super Mobile IP with v4/v6 interoperability and dynamic home agents
- A host multi-homing solution
- Newer views:
 - New waist of IP stack; universal connectivity
 - Secure carrier for signalling protocols

HIP as the new waist of TCP/IP

Rendezvous

- Initial rendezvous
 - How to find a moving end-point?
 - Can be based on directories
 - Requires fast directory updates
 - Bad match for DNS
- Tackling double-jump
 - What if both hosts move at same time?
 - Requires rendezvous point

Mobile IP

Home Agent (HA)
Serves a Home Address
Initial reachability
Triangular routing
Route optimization
Tunnels to bypass HA
HA as rendezvous point

Mobility protocol

Mobile

Corresponding

UPDATE: HITs, new locator(s), sig

UPDATE: HITs, RR challenge, sig

ESP from MN to CN UPDATE: HITs, RR response, sig

ESP on both directions

Key distribution for HIP

Basic HIP rendezvous

The infrastructure question

HIs originally planned to be stored in the DNS
Retrieved simultaneously with IP addresses
Does not work if you have only a HIT
Question: How to get data based on HIT only?
HITs look like 128-bit random numbers
Possible answer: DHT based overlay like i³

Distributed Hash Tables

- Distributed directory for flat data
- Several different ways to implement
- Each server maintains a partial map
- Overlay addresses to direct to the right server
- Resilience through parallel, unrelated mappings
- Used to create overlay networks

i³ rendezvous abstraction

- Trigger inserted by receiver(s)
- Packets addressed to identifiers
- i³ routes packet to the receiver(s)

Hi³: combining HIP and i3

- Developed at Ericsson Research IP Networks
- Uses i³ overlay for HIP *control* packets
 Provides rendezvous for HIP
- Data packets use plain old IP
 - —Cryptographically protected with ESP
- Only soft or optional state in the network

Hi³ and DHT-based rendezvous

i³ overlay based control plane

IP-based user plane

Control/data separation

An Internet control plane?

- HIP separates control and data traffic
- Hi³ routes control traffic through overlay
 - Control and data packets take potentially very different paths
- Allows telecom-like control …
 - -... but does not *require* it

Current status

• RFCs

- Host Identity Protocol (HIP) Architecture (RFC 4423) (60977 bytes)
- Host Identity Protocol (RFC 5201) (240492 bytes)
- Host Identity Protocol (HIP) Domain Name System (DNS) Extensions (RFC 5205) (34799 bytes)
- Host Identity Protocol (HIP) Registration Extension (RFC 5203) (26620 bytes)
- Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP) (RFC 5202) (68195 bytes)
- Host Identity Protocol (HIP) Rendezvous Extension (RFC 5204) (30233 bytes)
- End-Host Mobility and Multihoming with the Host Identity Protocol (RFC 5206) (99430 bytes)
- Using the Host Identity Protocol with Legacy Applications (RFC 5338) (34882 bytes)
- Internet-Drafts
 - Basic HIP Extensions for Traversal of Network Address Translators (75933 bytes)
 - Basic Socket Interface Extensions for Host Identity Protocol (HIP) (42500 bytes)
 - HIP Certificates (19638 bytes)
 - HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking Environment (42692 bytes)

Implementations

- HIP for Linux (HIPL) infrahip.hiit.fi
- •HIP for NetBSD
- OpenHIP