
T-110.5140
SOAP and UDDI

Tancred Lindholm, Sasu Tarkoma and

Pekka Nikander

Aalto University

Lecture outline

� SOAP

� Document style vs. RPC style SOAP

� SOAP intermediaries

� Data encoding in SOAP

� UDDI

� White, Yellow and Green pages

� UDDI API

SOAP I

� W3C XML Protocol Working Group is
specifying SOAP, part of the Web
Services Activity
� SOAP 1.2 currently a W3C Recommendation

� An application of the XML specification
� XML Infoset

� Relies on XML Schema, XML
Namespaces

� Platform independent

� Provides a standard way to structure
XML Messages

SOAP II

� Fundamentally stateless one-way message exchange
paradigm
� More complex interactions may be implemented

� Exchange of structured and typed information
� Between peers in decentralized fashion

� Using different mediums: HTTP, Email, ..

� Request-reply and one-way communication are supported

� Note that XML infoset is an abstract specification
� On-the-wire representation does not have to be XML 1.0!

� Specifications
� SOAP Version 1.2 Part 0: Primer

� SOAP Version 1.2 Part 1: Messaging Framework

� SOAP Version 1.2 Part 2: Adjuncts

� SOAP Version 1.2 Specification Assertions and Test
Collection

It is necessary to define:

� The type of information to be exchanged

� How to express the information as XML
(according to the Infoset)

� How to send the information

� SOAP defines (adjuncts part) these using:
� Data model

� Application-defined data structures and values as a
directed, edge-labeled graph

� SOAP encoding

� Rules for encoding instances of data from SOAP
data model to XML

� One-way and request-reply (RPC) msg exchange

� Binding framework in order to support concrete
messaging protocols and custom on-the-wire
representation

SOAP Message Structure

SOAP Envelope
SOAP Header
Header block
Header block

SOAP Body

Message Body

Optional header contains
blocks of information
regarding how to process
the message:
� Routing and delivery

settings
� Authentication/authorization

assertions
� Transaction contexts

� Body is a mandatory
element and contains the
actual message to be
delivered and processed
(and fault information)

SOAP Message Exchange
Model

� SOAP intermediary, or actor, sits between a
service consumer and provider and adds value
or functionality to the transaction

� The set of intermediaries that the message
travels through is called the message path

� No standard way of expressing the message
path

� “targeting:” SOAP has a mechanism for
identifying which parts of the SOAP message
are intented for processing by specific actors in
its message path
� Only for header blocks: targeted to a specific actor

on its message path by using “actor” attribute

Intermediary example

BuyerPurchasing

service

Signature

validation

service

1) Submit signed
P.Order

2) Validate
signature3) Process the

P.Order

Intermediaries

� SOAP Version 1.2 describes two intermediaries

� A Forwarding Intermediary

� forwards SOAP messages

� ”routing” block

� May not modify content

� An Active Intermediary

� Additional processing on an incoming SOAP
message

� Headers, message excange pattern

� May modify content in the message

� encryption, blinding, new header block,
timestamping, annotation, ..

The ”role” attribute

� Processing of header block and the body depend on
the role(s) assumed by the SOAP node for the
message
� SOAP defines optional env:role attribute that
� may be present in a header block (a URI)
� identifies the role played by the intended target of

the block
� A SOAP node is required to process the block if it

assumes the role identified by the value of the URI
� Three standardized roles:

� None
� no SOAP node should process the block

� Next
� next node must process block

� ultimateReceiver
� implicit if role not specified

� It is up to the node to know its roles, not part of the
specification

Roles continued

� Note that env:Body is always targeted to

the ultimate receiver and it must be

processed

� Mandatory header blocks

(mustUnderstand=true) must be processed

if the node has the role identified in the

mandatory block

SOAP Header II

� The SOAP rules require that processed blocks
are removed from the outbound message

� Unprocessed header blocks targeted at a role
played by a SOAP intermediary are also
removed

� The “relay” attribute may be used to preserve
the unprocessed header blocks
� SOAP 1.2 feature

Header example

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
env:mustUnderstand="true">

The next SOAP node must process

this header block. The block is

removed (even if not processed), but

may be reinserted. Preserved when

”relay” is used.

SOAP RPC I

� SOAP may be used for both request-reply and

one-shot messaging

� Ultimate SOAP receiver is the target of the
RPC procedure

� RPC information is carried in the env:Body
element and modelled as a struct / array

� Serialization according to the SOAP encoding
rules

� They are optional and there may be several
encoding rules for data types

SOAP RPC II

� To make an RPC call the following
information is needed:
� The address of the target SOAP node

(ultimate receiver)

� The procedure name

� The identities and values of any arguments,
output parameters and return value

� A clear separation of the arguments, which is
the target and what is additional information

� The message exchange pattern

� Optional data carried in the header blocks

� Service and procedure specification is
stored in a WSDL file

SOAP’s Data Encoding

� Method of serializing the data intended for

packaging

� Rules outline how basic application data types
are to be mapped and encoded into XML

� A simple type system that is a generalization of
the common features found in type systems in
programming languages, databases, etc.

� SOAP encoding and SOAP RPC representation

are optional and not always useful

� Encoding not needed if the data is already in XML

� RPC representation has some restrictions on data
models and encodings for RPC calls

Encoding Styles

� SOAP RPC encoding (rpc/encoded)

� <soap:Body> contains an element with the name of the
method or remote procedure being invoked

� This element in turn contains an element for each
parameter of the procedure

� SOAP stack handles the complexity

� Section 5 of the SOAP 1.1 spec, mapping into XML 1.0

� Developed before schema / WSDL

� SOAP RPC Representation literal encoding (rpc/literal)

� Suitable for XML data

� Schema for every parameter type but not for the whole
body

� SOAP document-style literal (document/literal)

� There are no SOAP formatting rules for what the
<soap:Body> contains

� The developer handles everything (using schemas)

� Easier for the system, easy to validate body

� Web Service Interoperability (WS-I): Only
document/literal allowed!

Purchase order in
document/literal-style SOAP

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Header>

<m:transaction xmlns:m=“soap-transaction”

s:mustUnderstand=“true”>
<transactionID>1234</transactionID>

</m:transaction>
</s:Header>
<s:Body>

<n:purchaseOrder xmlns:n=“urn:OrderService”>
<from><person>Christopher Robin</person></from>
<to><person>Pooh Bear</person></to>
<order><quantity>1</quantity>

<item>Pooh Stick</item></order>
</n:purchaseOrder>

</s:Body>
</s:Envelope>

RPC/encoded-style SOAP
Message

public Float getQuote(String symbol);

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Header>

<m:transaction xmlns:m=“soap-transaction”

s:mustUnderstand=“true”>
<transactionID>1234</transactionID>

</m:transaction>
</s:Header>
<s:Body>

<n:getQuote xmlns:n=“http://example/QuoteService.wsdl”>
<symbol xsi:type=“xsd:string”>IBM</symbol>

</n:getQuote>
</s:Body>

</s:Envelope>

SOAP RPC Response

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>

<s:Body>

<n:getQuoteResponse

xmnls:n=“http://example/QuoteService.wsdl”>

<value xsi:type=“xsd:float”>

98.06

</value>

</n:getQuoteResponse>

</s:Body>

</s:Envelope>

SOAP Faults

� SOAP has a model for errors

� Distinguishes between

� Detecting faults

� Signalling faults

� Upon the detection of a fault, a fault message is
generated

� env:Fault element is carried in the env:Body

� Two mandatory sub-elements

� env:Code

� env:Reason (human readable)

� Optional

� env:Detail, env:Node, env:Role

SOAP 1.2 Faults

<s:Envelope xmlns:s=“…”>
<s:Body>

<s:Fault>
<s:Code>Client.Authentication</s:Code>
<s:Reason>Invalid credentials</s:Reason>
<s:Detail>

<!-- application specific details -->

</s:Detail>
</s:Fault>

</s:Body>
</s:Envelope>

SOAP 1.1 Faults

<s:Envelope xmlns:s=“…”>
<s:Body>

<s:Fault>
<faultcode>Client.Authentication</faultcode>
<faultstring>Invalid credentials</faultstring>
<details>

<!-- application specific details -->

</details>
</s:Fault>

</s:Body>
</s:Envelope>

Standard SOAP Fault Codes

� Version Mismatch

� MustUnderstand: an immediate child

element of the header was not
understood. Specifies which header

blocks were not understood

� Server: server-side processing error

� Client: there is a problem in the

message (e.g. incorrectly formed

message, invalid authentication

credentials, ..)

SOAP 1.2 NotUnderstood
Header

<env:Envelope xmlns:env=“…”>

<env:Header>

<env:NotUnderstood qname=“t:transaction” xmlns:t=http://../>

</env:Header>

<env:Body>

<env:Fault>

<env:Code><env:Value>env:MustUnderstand</env:Value>

</env:Code>

<env:Reason>

<env:Text xml:lang=“en-US”>Header not

understood</env:Text>

</env:Reason>

</env:Fault>

</env:Body>

</env:Envelope>

SOAP 1.1 Misunderstood
Header

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Header>

<f:Misunderstood qname=“abc:transaction”

xmlns:=“soap-transactions” />
</s:Header>
<s:Body>

<s:Fault>
<faultcode>MustUnderstand</faultcode>
<faultstring>

Header(s) not understood

</faultstring>
<faultactor>http://acme.com/</faultactor>

</s:Fault>
</s:Body>

</s:Envelope>

XML Routing

� SOAP may be used to route XML documents in a
distributed system

� In content-based routing the contents of the SOAP
document (or an XML-document) are used in
making the forwarding decision
� XPath statements on header / body

� SOAP does not define a message path in itself

� WS-Addressing (Recommendation Core + SOAP
Binding)

� Performance issues for SOAP processing:
� transport protocol

� on-the-wire representation (some commercial systems
use gzip)

� in-memory-representation, SAX has less overhead than
DOM (DOM is not suitable for streaming)

� in-memory processing, how is the XML tree accessed
and matched

WS-Addressing

(001) <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

(002) <S:Header>
(003) <wsa:MessageID>
(004) uuid:6B29FC40-CA47-1067-B31D-00DD010662DA
(005) </wsa:MessageID>
(006) <wsa:ReplyTo>
(007) <wsa:Address>http://business456.example/client1</wsa:Address>
(008) </wsa:ReplyTo>
(009) <wsa:To>http://fabrikam123.example/Purchasing</wsa:To>
(010) <wsa:Action>http://fabrikam123.example/SubmitPO</wsa:Action>
(011) </S:Header>
(012) <S:Body>
(013) ...
(014) </S:Body>
(015) </S:Envelope>

Wireless SOAP I

� SOAP is seen as promising for wireless
environments because of its
interoperability

� However, SOAP implementations have
several limitations:
� HTTP is not efficient in wireless environments

� TCP is not efficient

� HTTP has overhead

� XML data has overhead both on-the-wire and
in-memory

� XML 1.0 representation is not suitable for low-
bandwidth, high-latency links

� Request-reply semantics may slow down
applications

Wireless SOAP II

� Current research at HIIT addresses these issues:

� Efficient message transport protocol for SOAP

� Event stream based representation for efficient on-the-

wire transmission and in-memory operations

� Event stream compression and token omission

� Schema-based compression

� Currently there is a W3C Working Group for

addressing bit-efficient XML representation

� Efficient XML Interchange WG

� SOAP for small devices:

� kXML and kSOAP

� J2ME Web Services 1.0 JSR-172

� JAX-RPC Java API for interacting with SOAP

� JAX-M JSR-67

SOAP Summary

� SOAP is a one-way and request-reply communication
protocol for exchanging messages between decentralized
peers

� SOAP is based on the XML Infoset
� Allows different on-the-wire representations

� Support for custom data types and custom encoding rules

� SOAP 1.2 is a W3C Recommendation

� SOAP header mechanism allows routing of XML
documents and supports intermediaries

� SOAP is becoming increasingly popular
� .NET, Sun J2EE, Apache Axis, Google,..

� And it is being extended for the wireless environment

� Current challenge

� Portability and interoperability across implementations

UDDI

� Universal Description Discovery and

Integration

� A “meta service” for locating web
services by enabling robust queries

against rich metadata

� Distributed registry of businesses and

their service descriptions implemented

in a common XML format

Web Service Challenges

� Who provides web services?

� How are they implemented?

� Where are they provided?

� What is their behavior?

� Is an application compatible?

� Searching and indexing do not work

today

� how to find the right services at the right time?

� we need solutions designed for tools and
apps

What is UDDI?

� Universal Description Discovery and Integration

� Industry-wide initiative supporting web services

� Specifications
� Schemas for service description

� Schemas for business (service implementers)
description

� Developed on industry standards

� Applies equally to XML and non-XML web services

� Implementation
� Public web service registry and development resources

� SOAP-based programming protocol for registering and
discovering Web services

� XML schema for SOAP messages

� a description of the API

� UDDI does not directly specify how pricing,
deadlines, etc. are handled/matched
� Advanced discovery via portals and marketplaces

Again: What is UDDI?

� A project to speed interoperability and adoption
for web services
� Standards-based specifications for service

description and discovery

� Shared operation of a business registry on the web

� Partnership among industry and business
leaders

� With UDDI a programmer or a program can
locate
� Information about services exposed by a partner

� find compatible in-house services

� Find links to specifications of a Web service

� Maintain technical compatibility by automatically
configuring certain technical connections

� Businesses can locate potential partners

The four core types of data structures that are
specified by the UDDI API Schema and their

relationships are shown here

UDDI v1 Implementation

UDDI Business Registry
Programmatic descriptions of

web services

Programmatic descriptions of
businesses and the services

they support
Programming model, schema,

and platform agnostic
Uses XML, HTTP, and SOAP

Free on the Internet

Manufacturers

Flower Shops

Marketplaces

Source: www.uddi.org, UDDI Overview presentation 9/6/2000

Standards Bodies, Agencies,
Programmers, Publishers

register specifications for their
Service Types

Service providers register

precise information about
themselves and their Web

services

UDDI Registry Entries

White pages

� Business name

� General business description

� Any number of languages

� Contact info

� Names, phone numbers, fax numbers, web

sites, etc.

� Known identifiers

� List of unique identifiers for a business

Yellow pages

� Business categories
� Based on standard taxonomies

� 3 base taxonomies in V1

� Taxonomies
� Industry: NAICS (Industry codes - US Govt.)

� Product/Services: UNSPSC (ECCMA)

� Location: Geographical taxonomy (ISO 3166)

� …easy extension in upcoming releases

� Realized using name-value pairs, any
valid taxonomy identifier can be
attached to the business white page

Green pages

� New set of information businesses use to

describe how to “do e-commerce” with them

� References to specifications for Web Services

� Business process (functional)

� Service specifications (technical)

� Programming/platform/implementation agnostic

� Binding information (implementation)

IBM

Ariba

Microsoftother

other

Now look at that
again:Registry Operation

� Peer nodes (websites)

� Companies register
with any node

� Registrations replicated
on a daily basis

� Complete set of
“registered” records

available at all nodes

� Common set of
SOAP APIs supported
by all nodes

� Compliance enforced by
business contract

UDDI.org

queries

Source: www.uddi.org, UDDI Overview presentation 9/6/2000

The programmer’s API
Implementation

� UDDI is up and running at Microsoft, IBM, and
Ariba.

� An online Web Service that you can use from your
applications to dynamically discover other online
services, all neatly packaged in a simple XML
interface:
� http://uddi.microsoft.com/inquire

� http://uddi.ariba.com/UDDIProcessor.aw/ad/process

� http://www-3.ibm.com/services/uddi/inquiryapi

� These are the UDDI entry points for “INQUIRIES”.
The entry points for updates are different and are
typically HTTPS addresses for security reasons.

UDDI Invocation Model

1. The programmer uses the UDDI business

registry to locate the businessEntity information
for the desired advertised Web Service

2. The programmer selects a particular
bindingTemplate and saves it

3. The program is prepared on this knowledge,
obtained from tModel key information in the
bindingTemplate

4. At runtime, the program invokes the Web
service as planned using the cached
bindingTemplate information

Registry APIs

� Inquiry API
� find_business, find_service, find_binding,

find_tModel

� get_businessDetail, get_serviceDetail,
get_bindingDetail, get_tModelDetail

� Publisher’s API
� save_business, save_service, save_binding,

save_tModel

� delete_business, delete_service,
delete_binding, delete_tModel

� Security
� get_authToken, discard_authToken

What XML Do You POST?

<?xml version='1.0' encoding='UTF-8'?>

<Envelope

xmlns='http://schemas.xmlsoap.org/soap/envelope/'>
<Body>

<find_business generic="1.0"

xmlns="urn:uddi-org:api">
<name>Microsoft</name>
</find_business>

</Body>

</Envelope>

How Do You Post the XML?

http = new

ActiveXObject("Microsoft.XMLHTTP");

http.open("POST", url, false);
http.setRequestHeader("Accept","text/xml");

http.setRequestHeader("Cache-Control","no-

cache");

http.setRequestHeader("SOAPAction",'""');
http.send(msg);

What Do You Get Back?

<businessList generic="1.0"

operator="Microsoft Corporation"
truncated="false" xmlns="urn:uddi-org:api">

<businessInfos>
<businessInfo

businessKey="0076B468-EB27-42E5-AC09-9955CFF462A3">
<name>Microsoft Corporation</name>

<serviceInfos>
<serviceInfo

businessKey="0076B468-…-9955CFF462A3"
serviceKey="8BF2F51F-…-38D8205D1333">

<name>EBI Services</name>
</serviceInfo>
<serviceInfo

businessKey="0076B468-…-9955CFF462A3"
serviceKey="D2BC296A-…-494F9E53F1D1">

<name>UDDI Web Services</name>
</serviceInfo>

More Information

� UDDI Resources

� http://www.uddi.org

� http://uddi.microsoft.com

� http://www-3.ibm.com/services/uddi

� For Developers

� SOAP/Web Services SDK

� Visual Basic UDDI SDK

� IBM AlphaWorks Web Services Toolkit

