
1

T-110.5140
SOAP and UDDI

Tancred Lindholm, Sasu Tarkoma and

Pekka Nikander

Aalto University

2

Lecture outline

� SOAP

� Document style vs. RPC style SOAP

� SOAP intermediaries

� Data encoding in SOAP

� UDDI

� White, Yellow and Green pages

� UDDI API

3

SOAP

� Fundamentally stateless one-way XML message exchange
paradigm

� More complex interactions may be implemented

� Exchange of structured and typed information

� Using different mediums: HTTP, Email, ..

� Request-reply and one-way communication are supported

� Specified using XML Infoset

� Note that XML Infoset is an abstract specification

� On-the-wire representation does not have to be XML 1.0!

� Specifications

� SOAP Version 1.2 Part 0: Primer

� SOAP Version 1.2 Part 1: Messaging Framework

� SOAP Version 1.2 Part 2: Adjuncts

� SOAP Version 1.2 Specification Assertions and Test
Collection

4

It is necessary to define:

� The type of information to be exchanged

� How to express the information as XML
(according to the Infoset)

� How to send the information

� SOAP defines (adjuncts part) these using:

� Data model

� Application-defined data structures and values as a
directed, edge-labeled graph

� SOAP encoding

� Rules for encoding instances of data from SOAP
data model to XML

� One-way and request-reply (RPC) msg exchange

� Binding framework in order to support concrete
messaging protocols and custom on-the-wire
representation

5

SOAP Message Structure

SOAP Envelope
SOAP Header
Header block
Header block

SOAP Body

Message Body

� Optional header contains
blocks of information
regarding how to process the
message:
� Routing and delivery

settings
� Authentication/authorization

assertions
� Transaction contexts

� Body is a mandatory element
and contains the actual
message to be delivered and
processed (and fault
information)

6

SOAP Message Exchange
Model

� SOAP intermediary, or actor, sits
between a service consumer and

provider and adds value or functionality

to the transaction

� The set of intermediaries that the

message travels through is called the
message path

� No standard way of expressing the
message path

7

Intermediary example

BuyerPurchasing

service

Signature

validation

service

1) Submit signed
Purchase order

2) Validate
signature3) Process the

Purchase order

8

Intermediaries

� SOAP Version 1.2 describes two
intermediaries

� A Forwarding Intermediary
� forwards SOAP messages

� ”routing” block

� May not modify content

� An Active Intermediary
� Additional processing on an incoming SOAP

message

� May modify content in the message

� encryption, blinding, new header block,
timestamping, annotation, ..

9

The ”role” attribute

� Processing of header block and the body depend on
the role(s) assumed by the SOAP node for the
message

� SOAP defines optional env:role attribute that

� may be present in a header block (a URI)

� identifies the role played by the intended target of
the block

� A SOAP node is required to process the block if it
assumes the role identified by the value of the URI

� Three standardized roles:

� None

� no SOAP node should process the block

� Next

� next node must process block

� ultimateReceiver

� implicit if role not specified

� It is up to the node to know its roles, not part of the
specification

10

Header example

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"

env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

env:mustUnderstand="true">

The next SOAP node must process

this header block. The block is

removed (even if not processed), but

may be reinserted. Preserved when

”relay” is used.

11

SOAP RPC I

� SOAP may be used for both request-reply and
one-shot messaging

� Ultimate SOAP receiver is the target of the RPC
procedure

� RPC information is carried in the env:Body
element and modelled as a struct / array

� Serialization according to the SOAP encoding
rules

� They are optional and there may be several

encoding rules for data types

12

SOAP RPC II

� To make an RPC call the following

information is needed:

� The address of the target SOAP node
(ultimate receiver)

� The procedure name

� The identities and values of any arguments,
output parameters and return value

� The message exchange pattern

� Optional data carried in the header blocks

� Service and procedure specification is

stored in a WSDL file

13

SOAP’s Data Encoding

� Method of serializing the data intended for
packaging in the SOAP message

� Rules outline how basic application data types
are to be mapped and encoded into XML

� A simple type system that is a generalization of
the common features found in type systems in
programming languages, databases, etc.

� SOAP encoding and SOAP RPC representation
are optional and not always useful

� Encoding not needed if the data is already in XML

� Yet another data model ...

� RPC representation has some restrictions on data

models and encodings for RPC calls

14

Encoding Styles

� SOAP RPC encoding (rpc/encoded)

� <soap:Body> contains an element with the name of the
method or remote procedure being invoked

� This element in turn contains an element for each
parameter of the procedure

� SOAP stack handles the complexity

� Section 5 of the SOAP 1.1 spec, mapping into XML 1.0

� Developed before schema / WSDL

� SOAP RPC Representation literal encoding (rpc/literal)

� Suitable for XML data

� Schema for every parameter type but not for the whole
body

� SOAP document-style literal (document/literal)

� There are no SOAP formatting rules for what the
<soap:Body> contains

� The developer handles everything (using schemas)

� Easier for the system, easy to validate body

� Web Service Interoperability (WS-I): Only
document/literal allowed!

15

Purchase order in
document/literal-style SOAP

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Header>

<m:transaction xmlns:m=“soap-transaction”

s:mustUnderstand=“true”>
<transactionID>1234</transactionID>

</m:transaction>
</s:Header>
<s:Body>

<n:purchaseOrder xmlns:n=“urn:OrderService”>
<from><person>Christopher Robin</person></from>
<to><person>Pooh Bear</person></to>
<order><quantity>1</quantity>

<item>Pooh Stick</item></order>
</n:purchaseOrder>

</s:Body>
</s:Envelope>

16

RPC/encoded-style SOAP
Message

public Float getQuote(String symbol);

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Header>

<m:transaction xmlns:m=“soap-transaction”

s:mustUnderstand=“true”>
<transactionID>1234</transactionID>

</m:transaction>
</s:Header>
<s:Body>

<n:getQuote xmlns:n=“http://example/QuoteService.wsdl”>
<symbol xsi:type=“xsd:string”>IBM</symbol>

</n:getQuote>
</s:Body>

</s:Envelope>

17

SOAP RPC Response

<s:Envelope

xmlns:s=http://www.w3.org/2001/06/soap-envelope>
<s:Body>

<n:getQuoteResponse

xmnls:n=“http://example/QuoteService.wsdl”>

<value xsi:type=“xsd:float”>

98.06
</value>

</n:getQuoteResponse>

</s:Body>

</s:Envelope>

18

UDDI

� Universal Description Discovery and
Integration

� A “meta service” for locating web
services by enabling robust queries

against rich metadata

� Distributed registry of businesses and
their service descriptions implemented in

a common XML format

19

Web Service Challenges

� Who provides web services?

� How are they implemented?

� Where are they provided?

� What is their behavior?

� Is an application compatible?

� Searching and indexing do not work

today

� how to find the right services at the right
time?

� we need solutions designed for tools and
apps

20

What is UDDI?

� Universal Description Discovery and Integration

� Industry-wide initiative supporting web services

� Specifications
� Schemas for service description

� Schemas for business (service implementers)
description

� Developed on industry standards
� Applies equally to XML and non-XML web services

� With UDDI a programmer or a program can locate

� Information about services exposed by a partner

� find compatible in-house services

� Find links to specifications of a Web service

� Maintain technical compatibility by automatically
configuring certain technical connections

21

The four core types of data structures that are
specified by the UDDI API Schema and their

relationships are shown here

22

Standards Bodies, Agencies,

Programmers, Publishers
register specifications for their

Service Types

Service providers register

precise information about

themselves and their Web

services

UDDI Registry Entries

23

White pages

� Business name

� General business description

� Any number of languages

� Contact info

� Names, phone numbers, fax numbers, web
sites, etc.

� Known identifiers

� List of unique identifiers for a business

24

Yellow pages

� Business categories
� Based on standard taxonomies

� 3 base taxonomies in V1

� Taxonomies
� Industry: NAICS (Industry codes - US Govt.)

� Product/Services: UNSPSC (ECCMA)

� Location: Geographical taxonomy (ISO
3166)

� …easy extension in upcoming releases

� Realized using name-value pairs, any
valid taxonomy identifier can be attached
to the business white page

25

Green pages

� New set of information businesses use to
describe how to “do e-commerce” with them

� References to specifications for Web Services

� Business process (functional)

� Service specifications (technical)

� Programming/platform/implementation agnostic

� Binding information (implementation)

26

UDDI tModels

� With tModels you attach an identifier to

� Technical interfaces / standards

� Arbitrary classification schemes

� Identifiers then used in service descr.

27

UDDI tModels Example

<tModel xmlns="urn:uddi-org:api" tModelKey="UUID:AAAAAAAA-">
<description xml:lang="en">Check limit reporter</description>
<overviewURL>http://schema.com/creditcheck.wsdl</overviewURL>
<categoryBag>
<keyedReference
tModelKey="UUID:CD153257-086A-4237-B336-6BDCBDCC6635"
keyName="Consumer credit gathering or reporting services"
keyValue="84.14.16.01.00"/>
<keyedReference
tModelKey="UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4"
keyName="types"
keyValue="wsdlSpec"/>

</categoryBag>
</tModel> <businessService businessKey="BB" serviceKey="CC">

<name>HPCU Credit Check</name>
<bindingTemplates>
<bindingTemplate serviceKey="CC" bindingKey="DD">
<accessPoint URLType="https">

https://hpcu.com/creditcheck</accessPoint>
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey="UUID:AAAAAAAA"/>
<tModelInstanceDetails>
</bindingTemplate>
</bindingTemplates
</businessService>

28

Registry APIs

� Inquiry API
� find_business, find_service, find_binding,

find_tModel

� get_businessDetail, get_serviceDetail,
get_bindingDetail, get_tModelDetail

� Publisher’s API
� save_business, save_service, save_binding,

save_tModel

� delete_business, delete_service,
delete_binding, delete_tModel

� Security
� get_authToken, discard_authToken

29

T-110.5140 Network Application
Frameworks

XML Security Basics

1.3.2010

Tancred Lindholm, Sasu Tarkoma,
Pekka Nikander

30

Contents

� Basic XML security

� High-level view to WS security

� Standardization

� Summary

31

Need for XML security

� XML document can be encrypted using SSL or
IPSec

� this cannot handle the different parts of the

document

� documents may be routed hop-by-hop

� different entities must process different parts of the

document

� SSL/TLS/IPSec provide message integrity and
privacy only when the message is in transit

� We also need to encrypt and authenticate the
document in arbitrary sequences and to involve
multiple parties

32

Basic XML Security

� XML Digital Signatures (XMLDSIG)

� XML Canonicalization

33

Digital Signatures

Message

Digest

Message

Digest

Message

Private key Public keyAsymmetric

Key Pair

SIGN VERIFY
Signature Pass/Fail

Need to know the message,
digest, and algorithm (f.e.

SHA1)

34

A word about digests &
canonicalization

� Secure Message Digest = binary value
that depends on all input bits in a non-
reversible manner

� Ex 1 digest('<i>Hello world</i>') = c0fe

� Ex 2 digest('<i>Hello world</i>') = beef

� The different values for ex1 and ex 2
above are sometimes not what is desired

� Want same digest for "same" data →
"Same" data must have exact same bits!

� Solution: canonicalize to standard syntax
(e.g. n * space = 1 space above)

35

XML Digital Signatures

� Digests calculated and a <Reference>
created

� Then a <Signature> element created
from <Reference>, keying information,

signature algorithm, and value

� The signature is actually calculated over the
SignedInfo subset of this information

36

XML Digital Signatures

<Signature ID?>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI?>

(<Transforms>)?
<DigestMethod></DigestMethod>
<DigestValue></DigestValue>

</Reference>)+
</SignedInfo>
<Signaturevalue></Signaturevalue>
(<KeyInfo>)?
(<Object ID?>)*

</Signature>

37

Detached signature of the content of the
HTML4 in XML specification

[s01] <Signature Id="MyFirstSignature" xmlns="http://www.w3.org/2000/09/xmldsig#">

[s02] <SignedInfo>

[s03] <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-200

[s04] <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

[s05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">

[s06] <Transforms>

[s07] <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

[s08] </Transforms>

[s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

[s10] <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

[s11] </Reference>

[s12] </SignedInfo>

[s13] <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>

[s14] <KeyInfo>

[s15a] <KeyValue>

[s15b] <DSAKeyValue>

[s15c] <P>...</P><Q>...</Q><G>...</G><Y>...</Y>

[s15d] </DSAKeyValue>

[s15e] </KeyValue>

[s16] </KeyInfo>

Canonicalization method:
whitespaces etc. Applied to

SignedInfo

Signature algorithm: DSA
(encryption), SHA-1 (digest)Reference to HTML 4 XML

spec (detached)

This gets signed!
Mandatory processes: validation of the

signature over SignedInfo and validation
of each Reference digest within

SignedInfo.

This is the output of canonic.
+ digest + encrypt. For

SignedInfo

Digest value calculated over
the identified data after
transformations

KeyInfo indicates the key to
be used to validate the
signature

38

XML Digital Signatures
(cont.)

� The data being signed can be inside the
<Signature>, within an <Object> element

(enveloping), or

� external to the <Signature> in the same

document or elsewhere (detached), or

� surrounding the <Signature>
(enveloped), or

� any combination of these.

39

Enveloping Signature

Signature

SignedInfo

Reference

Object

Signed Data

SignedInfo refers to object (sig is
parent), object digested & thus in
SignatureValue. Can be useful for

SOAP messages

40

Detached Signatures

XML Document

Signed Data

Signature

SignedInfo

Reference

Reference

Signed Data

Signed data can be anywhere in the
Local document

Or in some other location.
Note that this SignedInfo
refers to multiple docs.

41

Enveloped Signature

Signed Document

Signature

SignedInfo

Reference

The sig is in the
signed document

as a child. For
example: insert
data to SOAP

msgs

42

XML Signatures (cont.)

� To verify an XML digital signature

� Verify the digests in each Reference, and

� Verify the signature value over the
SignedInfo with the appropriate key and
given signature algorithm

43

What about <Transforms>?

� A way to specify a sequence of
algorithmic processing steps to apply

� to the results retrieved from a URI to

� Produce the data to be signed, verified, or
decrypted.

� Can include compression, encoding, subset
extraction, etc. For example using XPath

� Not needed in simple cases, but essential in
complex cases

44

High-level view to WS
security

� Security is as strong as the weakest link

� The options for an attacker are:

� Attack the Web Service directly

� Using ”unexpected” XML

� Attack the Web Services platform

� Attack a WS security tool

� Attack the underlying operating system or
network connection

45

Example – SQL Injection

SOAP Book Lookup
Message

Firewall

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”..”>

<SOAP-ENV:Header><SOAP-ENV:Header>

<SOAP-ENV:Body>

<BookLookup:searchByISBN xmlns:Booklookup=”..”>

<BookLookup:ISBN>1234567810</BookLookup:ISBN>

</BookLookup:searchByISBN>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

VB.NET code:

Set myRecordset = myConnection.execute(”SELECT * FROM myBooksTable

WHERE ISBN=”’” & ISBN_Element_Text & ”’”)

Becomes
SELECT * FROM myBooksTable WHERE ISBN = ’1234567810’

IIS
SOAP
stack

ASP .NET SQL server

Windows Server 2003

SQL

46

Attack: SQL Injection

SOAP Book Lookup
Message

Firewall

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”..”>

<SOAP-ENV:Header><SOAP-ENV:Header>

<SOAP-ENV:Body>

<BookLookup:searchByISBN xmlns:Booklookup=”..”>

<BookLookup:ISBN>’; exec master..xp_cmdshell ’net user Joe pass /ADD’;--

</BookLookup:ISBN></BookLookup:searchByISBN>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

VB.NET code:

Set myRecordset = myConnection.execute(”SELECT * FROM myBooksTable

WHERE ISBN=”’” & ISBN_Element_Text & ”’”)

Becomes
SELECT * FROM myBooksTable WHERE ISBN = ’’; exec master..xp_cmdshell ’net

user Joe pass /ADD ’;—

IIS
SOAP
stack

ASP .NET SQL server

Windows Server 2003

SQL

47

Solution

SOAP Book Lookup
Message

Firewall

IIS
SOAP
stack

ASP .NET SQL server

Windows Server 2003

SQL

Ensure the format of incoming SOAP parameters

<simpleType name=”isbn”><restrictions base=”string”><pattern
value=”[0-9]{10}”/></restriction></simpleType>

Validate this Schema against the data isolated by the following

XPath expression:

/Body/BookLookup:searchByISBN/BookLookup:ISBN

1234567810 passes

’exec master..xp_cmdshell ’net user Joe pass /ADD’-- fails

48

So now you get xkcd #327...

49

XML & WS Security
Standardization

� Core specification: XML Signature
� WS-Security

� SOAP with security tokens
� A security token represents a set of claims.
� Self-generated or issued by a trusted party

� Relies on XML Signature & Encryption
� SAML (Security Assertion Markup Language)

� A XML-based framework (schemas) for the exchange of
authentication and authorization information

� Mainly for integration, up to relying parties to decide to what
authentication authority to trust

� Assertions can convey information about authentication acts
performed by subjects, attributes of subjects, and authorization
decisions about whether subjects are allowed to access certain
resources

� Authentication statements merely describe acts of authentication
that happened previously

� SAML & WS-Security allow a SOAP message to include information
about the end-user’s authentication status

50

Who are specifying the
standards?

� Joint IETF/W3C

� XML Signature (www.w3.org/Signature)

� W3C

� XML Encryption (www.w3.org/Encryption/2001)

� XML Key Management (XKMS) (www.w3.org/2001/XKMS)

� OASIS

� WS-Security

� SOAP Message Security specification etc.

� SAML: Security Assertion Markup Language

� XACML: Extensible Access Control Markup language

� Web Services Interoperability Organization (WS-I)

� Basic security

