
1 of 20

T-110.5140 Network Application
Frameworks and XML

Distributed Hash Tables (DHTs)

1.2.2010

Tancred Lindholm, Sasu Tarkoma

2

Contents

� Motivation

� Terminology

� Distributed Hash Tables (DHTs)

� Overlays

� Clusters and wide-area

� Non-filesharing applications for DHTs

� Internet Indirection Infrastructure (i3)

� Delegation Oriented Architecture (DOA)

3

DHT Motivation

� Challenges in the wide-area

� Scalability

� Increasing number of users, requests, files,
traffic

� Resilience: more components -> more
failures

� Management: intermittent resource
availability -> complex management

� DHTs promise to address these

4

DHT Motivation (cont.)

� Directories are needed

� Name resolution & lookup

� Mobility support with fast updates

� Required properties

� Fast updates

� Scalability

� Reliability

� DNS has limitations

� Update latency

� Administration

� Alternative: DynDNS

� Still centralized management

� Inflexible, reverse DNS?

5

Terminology

� Peer-to-peer (P2P)

� Different from client-server model

� Each peer has both client/server features

� Distributed Hash Tables (DHT)

� An algorithm for creating efficient distributed hash

tables (lookup structures)

� Used to implement overlay networks

� Overlay networks

� Routing systems that run on top of another

network, such as the Internet

� Typical features of P2P / overlays

� Scalability, resilience, high availability, and they

tolerate frequent peer connections and

disconnections

6

Peer-to-peer in more detail

� A P2P system is distributed

� No centralized control

� Nodes are symmetric in functionality

� Comparatively large faction of nodes are
unreliable

� Nodes come and go

� P2P enabled by evolution in data
communications and algorithms (DHT)

� P2P driven by mostly illegal file sharing?

� Current challenges:

� Security (zombie networks,trojans), IPR issues

� P2P systems are decentralized overlays

7

Evolution of P2P systems

� Started from centralized servers

� Napster
� Centralized directory, transfer P2P

� Central directory single point of failure

� Second generation used flooding

� Gnutella
� Local directory for each peer

� Search by flooding network with queries

� High cost, worst-case O(N) messages

� Research systems use DHTs

� Chord, Tapestry, CAN, ..

� Decentralization, scalability

� Data lookup by fixed key in file sharing apps

� e.g. BitTorrent DHT extension

� not suited for free-form queries

8

DHT interfaces

� DHTs offer typically two functions

� put(key, value)

� get(key) --> value

� optionally delete(key)

� Supports wide range of applications

� Similar interface to UDP/IP

� Send(IP address, data)

� Receive(IP address) --> data

� No restrictions are imposed on the

semantics of values and keys

� Commonly key of value = hash(value)

� Key/value pairs are persistent and global

9

Distributed applications

Distributed Hash Table (DHT)

Node Node Node Node

put(key, value) get(key) value
DHT balances keys and

data across nodes

10

Some DHT applications

� Storage-related

� File sharing

� Web caching

� Censor-resistant data storage

� Backup storage

� Web archive

� Event notification

� Naming systems

� Query and indexing

� Communication primitives

Examples in this
lecture

11

DHT Example 1: Chord

� Chord is an overlay algorithm from MIT

� Stoica et. al., SIGCOMM 2001

� Chord is a lookup structure (a directory)

� Idea resembles binary search

� Support for rapid joins and leaves

� Churn

� Maintains routing tables

12

Chord

� Uses consistent hashing to map keys to
nodes

� Consistent hashing means any node
computes same node for a given value
(compare to using distributed protocols to
obtain an id)

� Keys are hashed to m-bit identifiers

� Nodes have m-bit identifiers

� IP-address is hashed

� SHA-1 is used as the baseline algorithm

13

Chord routing I

� A node has a well determined place within the ring
� Identifiers are ordered on an identifier circle modulo

2m ("clock math", e.g. 5+7 mod 23 = 4)
� The Chord ring with m-bit identifiers

� A node has a predecessor and a successor
� A node stores the keys between its predecessor

(inclusive) and itself (exclusive)
� The (key, value) is stored on the successor node of

key

� A routing table (finger table) keeps track of other
nodes

� NOTE: Slightly different descriptions in the literature
(range endpoint behavior), the idea is the same
though

14

Finger Table

� Each node maintains a routing table with
at most m entries

� Each node also knows its predecessor

� The i:th entry of the table at node n

contains the identity of the first node, s,

that succeeds n by at least 2i-1 on the
identifier circle

� s = successor(n + 2i-1)

� The i:th finger of node n

15

N1

N8

N14

N21

N32

N38

N42

N51

N56

2m-1 0

+1
+2

+4

+8

+16

+32

Finger Maps to Real node

1,2,3

4

5

6

x+1,x+2,x+4

x+8

x+16

x+32

N14

N21

N32

N42

m=6

for j=1,...,m the

fingers of p+2j-1

Predecessor node

E.g. N32 responsible for keys 21 to 31

16

Chord routing II

� Routing steps
� check whether the key k is found between n

and the successor of n → successor(n)

� if not, forward the request to the closest finger
preceding k

� Each knows a lot about nearby nodes and
less about nodes farther away

� The target node will be eventually found
� Find right halfcircle

� Then right quadrant

� Then next 1/8th

� etc.

17

Chord lookup

N1

N8

N14

N21

N32

N38

N42

N51
(keys 42..50)

N56

2m-1 0
m=6

+16

+8

get(50)?

18

Invariants

� Two invariants:

� Each node's successor is correctly
maintained.

� For every key k, node successor(k) is
responsible for k.

� A node stores the keys between its

predecessor and itself

� The (key, value) is stored on the successor
node of key

19

Join

� A new node n joins

� Needs to know an existing node n’

� Three steps

� 1. Initialize the predecessor and fingers of
node

� 2. Update the fingers and predecessors of
existing nodes to reflect the addition of n

� 3. Notify the higher layer

� Leave uses steps 2. (update removal)

and 3. (relocate keys)

20

Chord Join Overview

Node 26 joins the system between nodes 21 and 32. The arcs represent the
successor relationship.

(a) Initial state: node 21 points to node 32;
(b) node 26 finds its successor (i.e., node 32) and points to it;
(c) node 26 copies all keys less than 26 from node 32;

(d) the stabilize procedure updates the successor of node 21 to node 26.

Source: Stoica et al., Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications

21

Chord Properties

� Each node is on average responsible for
K/N keys (K is the number of keys, N is

the number of nodes)

� When a node joins or leaves the network

only O(K/N) keys will be relocated

� Lookups take O(log N) messages

� To re-establish routing invariants after

join/leave O(log2 N) messages are
needed

22

DHT Example 2: Tapestry

� DHT developed at UCB

� Zhao et. al., UC Berkeley TR 2001

� Used in OceanStore

� Secure, wide-area storage service

� Tree-like geometry

� Suffix - based hypercube

� 160 bits identifiers

� Suffix routing from A to B

� hop(h) shares suffix with B of length digits

� Tapestry Core API:

� publishObject(ObjectID,[serverID])

� routeMsgToObject(ObjectID)

� routeMsgToNode(NodeID)

23

Suffix routing

0312 routes to 1643 via

0312 -> 2173 -> 3243 -> 2643 -> 1643

1 hop: shares 1

suffix with 1643
2 hop: shares 2

suffix with 1643

3 hop: shares 3

suffix with 1643

Rounting table with b*logb(N) entries

Entry(i,j) – pointer to the neighbour ...ji (i = suffix)

24

Pastry I

� A DHT based on a circular flat identifier space
like Chord

� Prefix-routing

� Message is sent towards a node which is

numerically closest to the target node

� Procedure is repeated until the node is found

� Prefix match: number of identical digits before the

first differing digit

� Prefix match increases or numerical distance

decreases by every hop

� Customizable with different distance metrcis

� Similar performance to Chord

25

Pastry II

� Routing a message

� If the list of closeby nodes ("leaf set") has

the key --> send to node directly

� else send to the identifier in the routing

table with the longest common prefix
(longer then the current node)

� else query leaf set for a numerically
closer node with the same prefix match

as the current node

� Used in event notification (Scribe)

26

Security Considerations

� Malicious nodes

� Attacker floods DHT with data

� Attacker returns incorrect data

� self-authenticating data (hash of value is key)

� Attacker denies data exists or supplies incorrect routing

info

� Basic solution: using redundancy

� k-redundant networks

� What if attackers have quorum, i.e. nodes strategically
placed to defeat redundancy?

� Need a way to control creation of node Ids

� Solution: secure node identifiers

� Use public keys

27

Overlay Networks

� Origin in Peer-to-Peer (P2P)

� Builds upon Distributed Hash Tables

(DHTs)

� Easy to deploy

� No changes to routers or TCP/IP stack

� Typically on application layer

� Overlay properties

� Resilience

� Fault-tolerance

� Scalability

28

Overlay Networks (cont.)

Overlay Network

Logical Topology
(e.g. Chord)

Node "real" topology in IP network

29

Upper layers

(Apps, Middleware)

Overlay

Congestion

End-to-end

Routing

TCP

30

Distributed Data Structures
(DSS)

� DHTs are an example of DSS

� DHT algorithms are available for clusters

and wide-area environments

� They are different!

� Cluster-based solutions

� Ninja

� LH* and variants

� Wide-area solutions

� Chord, Tapestry, ..

� Flat DHTs, peers are equal

� Maintain a subset of peers in a routing table

31

Cluster vs. Wide-area

� Clusters are

� single, secure, controlled, administrative
domains

� engineered to avoid network partitions

� low-latency, high-throughput SANs

� predictable behaviour, controlled environment

� Wide-area

� Unstable configuration: nodes join & leave

� Heterogeneous networks

� Unpredictable delays and packet drops

� Multiple administrative domains

� Network partitions possible

32

Wide-area requirements

� Easy deployment

� Scalability to millions of nodes and

billions of data items

� Availability

� Copes with routine faults

� Self-configuring, adaptive to network

changes

� Takes locality into account

33

Distributed Data Structures
(DSS) for Clusters

� Ninja project (UCB)

� New storage layer for cluster services

� Partition conventional data structure across nodes
in a cluster

� Replicate partitions with replica groups in cluster

� Availability

� Sync replicas to disk (durability)

� Other DSS for data / clusters

� Amazon Dynamo Storage

� Dynamo: Amazon's Highly Available Key-Value
Store (SOSP 2007)

� LH* Linear Hashing for Distributed Files

� Redundant versions for high-availability

34

Cluster-based Distributed
Hash Tables (DHT) in Ninja

� Directory for non-hierarchical data

� Several different ways to implement

� A distributed hash table

� Consists of “bricks" which each maintains a
partial map

� Adding bricks increases capacity/
performance

� Resilience through parallel, unrelated

mappings

35

client client client client

service

DSS lib

service

DSS lib

storage

“brick”

storage

“brick”

storage

“brick”

storage

“brick”

storage

“brick”

storage

“brick”

SAN

Service interacts

with DSS lib

Hash table API

Redundant, low

latency, high

throughput

network

Brick = single-

node, durable

hash table,

replicated

clients interact

with any

service

“front-end”

Ninja Architecture

36

Applications for DHTs

� DHTs are used as a basic building block
for an application-level infrastructure

� Internet Indirection Infrastructure (i3)

� New forwarding infrastructure based on Chord

� DOA (Delegation Oriented Architecture)

� New naming and addressing infrastructure

based on overlays

37

Internet Indirection
Infrastructure (i3)

� A DHT - based overlay network

� Based on Chord

� Aims to provide more flexible
communication model than current IP

addressing

� Decouples sender from receiver by
introducing indirection point

� One proposal to fix some fundamental
problems in the Internet

38

i3 II

� i3 packets are sent to identifiers

� each identifier is routed to the i3 node

responsible for that identifier

� the node maintains triggers that are

installed by receivers

� when a matching trigger is found the

packet is forwarded to the receiver

39

i3 III

� An i3 identifier may be bound to a host,
object, or a session

� i3 has been extended to

� Allows end hosts to control the placement of
rendezvous-points (indirection points) for
efficient routing and handovers

� This is Robust Overlay Architecture for
Mobility (ROAM)

� Legacy application support

� user level proxy for encapsulating IP packets
to i3 packets

40

Source: http://i3.cs.berkeley.edu/

R inserts a trigger (id, R) and receives

all packets with identifier id.

the host changes its address from R1 to R2,

it updates its trigger from (id, R1) to (id, R2).

Mobility is transparent for the sender

41

Source: http://i3.cs.berkeley.edu/

A multicast tree using a hierarchy of triggers

42

Source: http://i3.cs.berkeley.edu/

Anycast using the longest matching prefix rule.

Suffixes indirectly give

preference to receivers in group

43

Source: http://i3.cs.berkeley.edu/

Sender-driven service composition using

a stack of identifiers

Receiver-driven service composition using

a stack of identifiers

44

Layered Naming Architecture

� Presented in paper:

� A Layered Naming Architecture for the Internet,
Balakrishnan et al. SIGCOMM 2004

� What is wrong with http://images.org/tux.jpg ?

1. OK: names an image

2. BAD: tells us HOW and WHERE to reach it

3. BAD: WHERE (DNS->IP) is bound to Inet toplogy

� Service Identifiers (SIDs) are host-independent data
or serice names (fix point 2)

� End-point Identifiers (EIDs) are location-independent
host names (fix point 3)

� E.g.

1. Resolve URL to SID = persistent name of data

2. Resolve SID to transport and EID = how and from whom
to get data

3. Resolve EID to IP = address to data

45

Layered Naming Architecture

� Protocols bind to names and resolve
them
� Applications use SIDs as handles

� SIDs and EIDs should be flat
� Stable-bame principle: A stable name should

not impose restrictions on the entity it names

� Inspiration: HIP + i3 + Semantic Free
Referencing

� Prototype: Delegation Oriented
Architecture (DOA)

46

IP IP

Transport

App session

User level descriptors (search query..)

Search returns SIDs

SIDs are resolved to EIDs

Resolves EIDs to IP

Transport

App session

Bind to EID

Use SID as handle

47

DOA cont.

� DOA header is located between IP and

TCP headers and carries source and

destination EIDs

� The mapping service maps EIDs to IP

addresses or 1 or more EIDS, which are
intermediaries

� This allows the introduction of various
middleboxes to the routing of packets

� Service chain, end-point chain

� Outsourcing of intermediaries

� Ideally clients may select the most useful
network elements to use

48

OpenDHT

� A publicly accessible distributed hash table
(DHT) service

� Discontinued in 2009

� OpenDHT ran on a collection of 200 - 300 nodes
on PlanetLab.

� Client do not need to participate as DHT nodes.

� Used bamboo DHT

� www.opendht.org

� OpenDHT: A Public DHT Service and Its Uses.
Sean Rhea, Brighten Godfrey, Brad Karp, John
Kubiatowicz, Sylvia Ratnasamy, Scott Shenker,
Ion Stoica, and Harlan Yu. Proceedings of ACM
SIGCOMM 2005, August 2005.

49

Summary

� Mobility and multi-homing require directories

� Scalability, low-latency updates

� Overlay networks have been proposed

� Searching, storing, routing, notification,..

� Lookup (Chord, Tapestry, Pastry), coordination

primitives (i3), middlebox support (DOA)

� Logarithmic scalability, decentralised,…

� Many applications for overlays

� Lookup, rendezvous, data distribution and

dissemination, coordination, service composition,

general indirection support

50

Discussion Points

� Why do most popular P2P programs
have simple algorithms?

� How secure should P2P / overlays be?

� How much will DHTs be deployed in

commercial software?

� Will DHTs be part of future core Internet?

� Will there be more name layers (outside

single apps) or are such fundamental
changes unrealistic?

� the joke is that DOA = Dead on Arrival

51 of 20

T-110.5140 Network Application
Frameworks and XML

Additional material: Chord Joins and
Leaves

52

Invariants

� Two invariants:

� Each node's successor is correctly
maintained.

� For every key k, node successor(k) is
responsible for k.

� A node stores the keys between its

predecessor and itself

� The (key, value) is stored on the successor
node of key

53

Join

� A new node n joins

� Needs to know an existing node n’

� Three steps

� 1. Initialize the predecessor and fingers of
node

� 2. Update the fingers and predecessors of
existing nodes to reflect the addition of n

� 3. Notify the higher layer software and
transfer keys

� Leave uses steps 2. (update removal)

and 3. (relocate keys)

54

1. Initialize routing
information

� Initialize the predecessor and fingers of
the new node n

� n asks n’ to look predecessor and fingers

� One predecessor and m fingers

� Look up predecessor

� Requires log (N) time, one lookup

� Look up each finger (at most m fingers)

� log (N), we have Log N * Log N

� O(Log2 N) time

55

Steps 2. And 3.

� 2. Updating fingers of existing nodes

� Existing nodes must be updated to reflect the
new node (any any keys that are transferred
to the new node)

� Performed counter clock-wise on the circle

� Algorithm takes i:th finger of n and walks in the

counter-clock-wise direction until it encounters

a node whose i:th finger precedes n

� Node n will become the i:th finger of this node

� O(Log2 N) time

� 3. Transfer keys

� Keys are transferred only from the node
immediately following n

56

References

� http://www.pdos.lcs.mit.edu/chord/

