

T-110.5140 Network
Application Frameworks

Overview

Dr. Tancred Lindholm
Based on slides by
Prof. Sasu Tarkoma and Prof. Pekka
Nikander

 Overview
 Networking: naming, addressing, routing
 Multi-addressing:Mobility, multi-homing
 Security: Trust, risks, protocols, keys
 Objects: Encapsulation, XML, frameworks
 Performance: bandwidth, delay, bottlenecks

 Connections between aspects
 Examples

NAF Overview

Networking

 Communication between distributed entities
 What are network entities?

 How are they named?
 How are they connected?

 How are resources allocated?
 Where is state?

 How it is created?
 How it is removed?
 How it is maintained?

Naming, Addressing,
Routing

NAMING

ADDRESSING ROUTING

 Fundamental design aspects of a network

Naming, Addressing,
Routing

 Naming
 Simply the name of an entity
 For example: a domain name

 Addressing
 The address of an entity
 For example: geographical location, IP-address

 Routing
 How to relay messages between addresses
 Examples: IP-routing, overlay-routing

 Naming, addressing, and routing
 may be applied on many levels and for different purposes

Naming,
Addressing, Routing

 For the remainder: we assume that
addresses are assigned topologically

 Prefix-routing (network part, host part)
 High-level routing between networks
 Final destination routing inside network
 More flexibility: CIDR (variable length prefix)

 Keeps routing tables manageable
 Addresses depend on location, i.e., addresses

sharing network prefix are co-located inside
that network

Mobility and Multi-
addressing

 Multi-addressing
 Entities may have multiple addresses

 Mobility requires support for address
change

 In mobility the topological location (access
point) changes --> the address changes

 Mobility
 Mobile nodes
 Handover terminology

 make-before-break / soft handover (e.g. 3G)
 break-before-make / hard handover (e.g. 2G)

Mobility Example:Mobile
IP Triangular Routing

Home agent

Correspondent
host

Foreign agent

Mobile host

Triangular routing

Mobile host fixed IP
in this network

Home network Foreign network

E
m

ulated connection

Multi-addressing

 Multi-homing
 "on multiple home networks"

 Server has multiple addresses on different networks for increased
reliability

 Client has multiple addresses

 Multi-homing supported by active address change (to
switch link)

 Topology change can cause renumbering
 From old prefix to new prefix

 Changing the IP host addresses of each device within the network

 Related with multi-homing and must be supported by mobility
protocols

ISP1

ISP2

ImportantCorp
Multi-homed

site

NAT1

NAT2

Site multi-homing

Multi-homing
Examples

Wireless Host

Internet

WLAN

GPRS

End-host multi-homing

Multi-layer
Operation

 Mobility and multi-homing can be
realized on different layers

 Network (Mobile IP)
 Between network and transport (HIP)
 Transport (SCTP)
 Application (SIP, overlays)

 Best case: mobility / multi-homing solved
on one layer

 Worst case: mobility / multi-homing
resolved on each layer

Facets of Distributed
Systems

 There are many, many ways to look at a
distributed system (and systems in
general)

 Let's skim some of these (and return
later)

User POVs of
Distributed Systems

 User view point
 Services that work
 24/7, anywhere
 Usability, security

 Developer view point
 Easy to develop and debug
 Fast time-to-market

 Administrator view point
 Easy to deploy and maintain
 Scale well
 Secure

Security

 Requirements
 Confidentiality
 Authentication
 Authorization

 Rules, policies, ACLs
 ticket-based schemes

 Non-repudiation
 Auditing and logging
 Availability

Security

 Physical network operated by many parties
 Not all operators can be trusted
 Protecting subnets

 Firewalls, NATs, middleboxes
 Connectivity problems

 Need for cryptographic protection
 Integrity and confidentiality of data
 Identification, access control, and authorization
 Key distribution and trust creation/evaluation

Programming with
Objects

 Information hiding for programmers
 Extend a familiar paradigm to a distributed

environment
 Cracks in the centralized OO model

 Huge difference in latency
 completely different fault semantics
 synchronization problems

 How to name and find objects outside a single
memory space?

 Using services provided by third parties?

Performance

 Network Quality of Service (QoS)
characteristics

 End-to-end latency
 Bandwidth
 Jitter matters

 A dynamic phenomenon if packet switched
 Congestion leads to drops or delays

 Different paths have different QoS
properties

 Two worlds: wireless and wired

Delay and failure
model matters

 A single process
 succeeds or fails
 method call takes nanoseconds
 all-or-nothing delay and failure model often

adequate
 In a network,

 round trip latency may be ~ 100ms
 end-nodes may fail rather often fail

complete process?
 a path between two end-nodes may fail
 performance may fall to unacceptably poor

level

System Models

 Layered model
 Object centric view
 Network centric view

Layered Model

Internetworking

Transport

Session

Presentation Object API.

“Transaction”, RPC

End-to-end

Routing

Congestion control

Presentation

 No unambiguous layering

Object centric view
(High Level)

Objects

Network Security

Directories

Object API to
network

Object-level
security

Naming and
finding objects

Naming and finding
objects

 Objects need to have out-of-process
names (i.e., not just memory addresses)

 Each type (class) needs to have a name
 Each method (action) needs to have a name

 Objects may be mobile, replicated,
ephemeral, or permanent(persistent)

 How to find an object in the network?
 How to maintain a consistent view of

types when they evolve?

Providing an Object in
the Network

 Mostly a matter of providing naming
 How to find the object?
 How to find type and method meta-data?
 How to refer to remote objects?

 Also
 How to move objects over the network?
 How to synchronize replicated objects?
 Abstraction of delay and faults

Object Security

 Objects represent reactive data storage
 May implement access control logic

 Threads of execution act upon them
 <Thread ID, Call History> has {permissions}

 How to trust a remote node?
 How to represent permissions over the

network?

Network centric view
(Lower Level)

Objects

Network Security

Directories

Delay and
failure mode

Naming,
addressing, and
directories

Network security

Secure network mgmt

Network security

 Large networks are physically vulnerable
 Cryptography for integrity and

confidentiality
 Need to solve the key distribution problem for

authentication
 Not everybody is equally trusted

 Need to have identities and credentials
 Security and Availability
 Security and Privacy
 Balance: security vs. ease of administration

vs. performance

Naming,
addressing, and
directories
 Network entities are named

 DNS names: www.example.org

 Names need to be translated to
addresses

 Network only how to forward to an address!

 A directory provides translation
information

 Avoid mutually dependent design
 Make sure that basic networking works even

without directories.

Course Concepts in the
Context of Examples

 Networking: IPv4 and IPv6
 Directories: DNS
 Security: IPsec and IKE
 Objects: Java RMI

Networking: IPv4
and IPv6

 Hosts named and addressed by IP
address

 IP addresses are assigned topologically
 Forwarding tables

 Created by routing protocols
 Converge time: minutes

 Two broad classes of state:
 Routing and forwarding tables
 End-to-end state

Concerns with IP
networks

 Not end host state, not really routing
state either: NAT

 Should always be soft state to protect
resources

 Congestion control, reliability, packet
drop / retransmission, flow control

 Traditionally handled at the transport layer

 Routing hardware design and cost
 Complexity of next-hop lookup
 QoS facilities, queues, traffic shaping

Directories: DNS

 Provides Domain Name to IP address
mapping

 Hosts are no longer named with IP addresses
 Replicated, hierarchical repository
 Data cached at edge hosts

 Reduces traffic
 Long-lived caches make update distribution

slow (short lived would DOS the system)
 Partitioned into administrative domains
 Relatively poor security

 Mostly relies on manual configuration

Concerns with
directories

 Actual data storage and structure
 Logical structure, i.e., architecture
 Architecture + hardware structure =

performance level

 Partitioning, replication, caching
 Access control: reading, modification
 Representation of relationships
 Representation of objects

Security: IPsec

 IP Security (IPsec)
 End-to-end, below congestion control

 Authentication Header (AH)
 Integrity and authenticity (immutable IP header+payload)
 Problems with NATs (dst mutable)

 ESP (Encapsulating Security Payload)
 Transport-mode: higher level payload

• host-to-host, IP headers not encrypted
 Tunnel-mode: payload is IP packet

• network-to-network, inner packet encrypted
 Mostly in tunnel mode, VPNs

 Contains a complex policy control model

IKE
 IPSec separates key management into IKE
 Security Association (SA)

 relationship between two or more entities that describes how
the entities will use security services (algorithm, key) to
communicate securely

 Internet Key Exchange (IKE)
 negotiates the IPSec security associations (SAs)

 negotiates the security association for IPSec

 authentication, establishment of shared keys

IPsec and IKE

IPSec
Alice

IKE
Alice

IPSec
Bob

IKE
BobIKE Tunnel

1.No IPSec SA for Bob

2. Alice’s IKE starts negotiations 3. Negotiation completes.

IPSec SAs in place

4. Protected packets are sent to Bob

Concerns with
security

 Right layer to implement?
 E.g. crypted transport won't solve partial doc

access

 What about multi-layer security?
 Privacy? DoS protection?
 Trust management?

 How to bootstrap trust?

 Authorization and credentials?

Objects: Java RMI

 Java Remote Method Invocation

 Objects in one VM invoke objects in a remote VM

 Remote handle = "out of process pointer"

 From the registry name facility

 By receiving the reference as an argument or return value of a method
call

 Client needs stubs

 stubs are proxy object in the remote VM taht forward calls over the
network

 Reflection adds interesting semantics

 Run-time dispatch instead of compile time, late binding

 Parameters of method calls are passed as serialized objects (deep
copy)

Objects: Java RMI

Transport

Remote Reference Layer

Stubs Skeletons

Client ServerApplication

RMI system

1. Client Obtains Handle

2. Stub is called (rep. Remote object)
3. Marshalling arguments

4. Skeleton unmarshals

5. Skeleton calls method

6. Skeleton marshals result
7. Stub unmarshals result and

 passes it to client (type checking)

Transport independence.
Connection management.

Unicast/multicast object invocation.

Concerns with
objects

 Object Discovery
 Representation of Object Handle

 Reliability and disaster recovery
 Fault tolerance: Replication, Consistency, etc.
 Version detection

 Marshalling and unmarshalling
 Transparency vs. efficiency

 Easy to destroy perf if RPC is transparent
 Performance

 Easy to send more data than necessary!
 Distributed garbage collection

 Supporting heterogeneous environments

Summary

 Networking: naming, addressing, routing
 Multi-addressing: mobility, multi-homing
 Security: Trust, risks, key distribution
 Objects: naming, representation
 Performance: bandwidth, delay,

bottlenecks

Questions /
discussion

	 T-110.5140 Network Application Frameworks Overview Dr. Tancred Lindholm Based on slides by Prof. Sasu Tarkoma and Prof. Pekka Nikander
	Slide 2
	Networking
	Naming, Addressing, Routing
	Slide 5
	Slide 6
	Mobility and Multi-addressing
	Mobility Example:Mobile IP Triangular Routing
	Multi-addressing
	Multi-homing Examples
	Multi-layer Operation
	Facets of Distributed Systems
	User POVs of Distributed Systems
	Security
	Slide 15
	Programming with Objects
	Performance
	Delay and failure model matters
	System Models
	Layered Model
	Object centric view (High Level)
	Naming and finding objects
	Providing an Object in the Network
	Object Security
	Network centric view (Lower Level)
	Network security
	Naming, addressing, and directories
	Course Concepts in the Context of Examples
	Networking: IPv4 and IPv6
	Concerns with IP networks
	Directories: DNS
	Concerns with directories
	Security: IPsec
	IKE
	IPsec and IKE
	Concerns with security
	Objects: Java RMI
	Slide 38
	Concerns with objects
	Summary
	Questions / discussion

