Proposal to NoPhiCER 2008

How could we investigate students’ experiences of software design and relations
between models and code?

Jonas Boustedt
Division of Scientific Computing
Department of Information Technology
Uppsala University
SE-751 05 Uppsala, Sweden
jbt@it.uu.se

ABSTRACT

We want to know more about how students experience
aspects of software design and problem-solving. In par-
ticular, the upcoming research aims to explore how stu-
dents experience modelling and coding of object-oriented
software and the relation between models and code.

We plan to start this phenomenographic study in the
autumn of 2008 and it will involve computer science
students from one or more Swedish universities. The
analysis should be accomplished during spring 2009.

The proposed (tentative) research question is formu-
lated as follows:

How do students experience object-oriented soft-
ware design?

The research question needs to be operationalized, and
I suggest the following aspects to be investigated by
phenomenographic interviews and analysis:

e In what ways do students experience design mod-
els?

e How do students explain the relations between con-
cepts in models and in code?

e How do students express the motivation for using
object-oriented design?

Answers to these questions should possibly help to for-
mulate partial answers to underlying questions about
aspects of “programming-in-the-large”, implications for
teaching, and more.

I look forward to discuss these matters with phe-
nomenographers at NoPhiCER. The proposed discus-
sion questions are labelled “DQ” in the following text.

Why do | think thisisinteresting?

Object-oriented software design involves the question of
how programmers should structure their designs to effi-
ciently produce understandable, maintainable, change-
able and reusable software. This is very problematic
and challenging from an educational point of view, be-
cause it is easy for both students and teachers to see the
concrete details with short term goals, but it is much
harder to for teachers to explain and motivate advanced

abstract concepts with long term goals, especially if the
students’ views on software design are shrouded in mys-
tery.

I believe that if you go “design first”, modelling and
design require a good understanding of the meanings of
the symbols and idioms of the modelling language itself
and their possible interpretations (meanings) in code.
And if you go “coding first” (some do it well) it takes
a good ability to model “intuitively in the head”. In
both cases the relations between the model and the im-
plementation are important. I find it very exiting and
meaningful to learn more about how students experi-
ence this relation.

The results from this study should be interesting for
researchers and teachers, and potentially they could
be used to analyse and structure lectures, assignments,
courses and curricula with consideration to the stu-
dents’ experiences.

| ssues to discuss at NoPhiCER

We have all met students who did not care much for de-
sign and modelling, preferring “headfirst programming”
in the beginning of their education, and for some stu-
dents it takes a long time before they appreciate “design
first” — if they ever get it.

DQ 1: How should the phenomenographical
research be designed to allow useful applica-
tion of results?

Following the theme of modelling software, I plan
to investigate the students experiences of relations be-
tween various phenomena expressed in symbolic (graph-
ical) notations (such as the UML) and in the used pro-
gramming language (such as Java). Examples of phe-
nomena are model, aggregation, composition, naviga-
bility, inheritance, multiplicity, class/object, packages,
implementation of interface, polymorphism, et cetera
(see Figure 1).

DQ 2: Are the students’ experiences of these
phenomena interesting for other researchers
in the CER community and phenomenogra-
phers as well?

One of my ideas for data collection is inspired from
my previous work (see below). The idea is to have stu-



dents doing problemsolving, design and implementation
in pairs, thus forcing recordable conversations during
their work. In an additional experiment the same stu-
dents should re-engineer models from given codes. The
researcher is present all the time and takes notes. The
researcher consults the notes and makes adjustments
to a semi-structured phenomenographic interview script
and carry out the interview with the students sepa-
rately. The interviews will be investigated through phe-
nomenographic analysis, but could it also be the case
that parts of the recorded conversations during mod-
elling can be analysed?

DQ 3: Apart from interviews; how can phe-
nomenography be applied to transcribed dis-
cussions between people and how should data
collection be prepared in practise?

Formsfor discussion

I want to share my ideas about research questions, data
collection, analysis and how to make conclusions. In
the discussion I hope to get comments and suggestions
from other phenomenographic researchers from the field
of CER.

Since I want to get a rich, comprehensive view on stu-
dents’ experiences of modelling and its elements, the de-
sign of the study must be planned carefully. I hope that
this discussion could be interesting for other researchers
that have similar research questions or are interested in
similar methods.

Experience and interest in Phenomenography

My research interest is aimed at aspects of students

“programming-in-the-large” as opposed to “programming-

in-the-small”. In my licentiate thesis, I describe a phe-
nomenographic study on students’ experiences of work-
ing with a “large” software system during a role-play ex-
periment where the students acted as a newly employed
programmer at a software company. Their mission was
to complete a large software project where the senior
programmer had taken ill. By reading the documenta-
tion, they should realize that they had to write the code
for a new plug-in module.

The role-play was followed by a debrief and a phe-
nomenographic interview that lasted for about 45 — 60
minutes. The students were asked about their experi-
ences of the role-play, their conceptions of the software
system and their ideas about the Java interface concept
and plug-ins, which was frequently utilized in the soft-
ware. The experiences of these phenomena were investi-
gated using phenomenographic analysis. The resulting
outcome spaces were presented and discussed and some
conclusions were drawn.

I wanted the students to be in a state of mind where
they had the experiences from the role-play near at
hand, making it easy to relate the discussed phenomena
to concrete situations and to the specific details of the
software.

My conclusions of the effects of the chosen data col-
lection method in that study are:

1. it helped to bring forward aspects of “programming-
in-the-large” to the interviews,

A problem
need)

A software
solution

O -
Analy5|s Desngn
/;Y' m@gﬁb

AnaIySI DeSIgn | Interpretations Program
model mode co e
~ Mﬂppmgs

Subject
collective

Researcher
Figure 1: A model of the object-oriented prob-
lem solving process and what I intend to study:
the relation between the students and phenom-
ena associated with modelling.

2. the students appreciated their participation in the
role-play and in the interviews which lead to a
friendly and open-minded setting,

3. the interviews were stimulating and the previous
role-play helped both the interviewer and the in-
terviewee to stay focused,

4. the conditions for looking into the structural as-
pects of the studied phenomena was strengthened
because the students could relate both generaliza-
tions and specializations (examples from the soft-
ware) in their descriptions.

Some thoughts about learning design

Compared to what students learn in introductory pro-
gramming courses, software modelling is an activity that
requires an ability to move between abstraction levels.
The meanings of the symbols that are used can be both
ambiguous and deep, however, they can also suggest a
very concrete meaning in code. The designer’s focus
is shifting; from beeing aware of patterns of relations
formed by the symbols and what advantages they have,
to beeing aware of the concrete effects the symbols and
the relations have, implemented in some specific pro-
gramming language. Before this comes natural, I be-
lieve it takes some time and experience

Once perspectives smoothly can be shifted from the
concrete to the abstract, beeing concrete about the ab-
stract, and shifted back to the concrete from the ab-
stract — perhaps it is only then the learner can utilize
modelling in a meaningful way.



