
From Desktop to Browser Platform: Office Application Suite with
Ajax

Mika Salminen
Helsinki University of Technology

mjsalmi2@cc.hut.fi

Abstract

Web applications have usually been less responsive and pro-
vided poorer user experience compared to traditional desktop
applications. World Wide Web was not originally developed
for highly interactive applications and that is why the client-
server interaction used in web has not been ideal for highly
interactive applications. Ajax (Asynchronous JavaScript and
XML) is a set of technologies utilizing standard browser tech-
nologies to overcome the traditional problems with web ap-
plications. It provides means for client-side event handling,
incremental user interface modification and asynchronous
data transfer between a client and a server. Use of Ajax has
allowed new types of applications to be brought from desk-
top platform to web platform. One class of these new web
applications is presented by Google Docs suite which im-
plements the conventional office applications: word proces-
sor, spreadsheets and presentations for web browser. Google
Docs is used in this paper as an example of new kind of web
applications made possible by Ajax. Google Docs is pro-
vided as a hosted service which means that it shares some
benefits and drawbacks of other applications provided as ser-
vice. These benefits and drawbacks are discussed in the pa-
per. Also the overall functionality of Google Docs is ex-
plained.

KEYWORDS: Ajax, Google Docs, web application,
browser platform, SaaS, software as a service

1 Introduction

Traditionally most everyday applications require installation
on a specific computer and the executable code they con-
sist of is platform specific machine code and cannot be run
on other platforms without recompiling it from source code.
The rest of this paper references to these applications with
a term desktop application. Now that the WWW has been
very largely adopted and almost every desktop computer
has a web browser, new class of applications, utilizing the
browser as their platform has started to evolve. The biggest
differences in this new class of applications are that the user
does not have to install the software, it runs directly from
the server and the user interface is written in languages that
are interpreted by web browser. This means that only the
browser is needed to run the program. These applications
are referred later by the term web application.

For long web applications were mostly suitable only for

applications which did not require much interaction and
changes to the user interface view. This was largely caused
by the limitations of the browser platform and its program-
ming languages. Web browser was originally developed
to retrieve static documents on request and show them on
screen, not for complex, interactive applications [4].

Until the recent years many traditional desktop applica-
tions could not be replaced by web applications simply be-
cause of the browser platform limitations. At least the us-
ability of an application would have been largely degraded
if it had been implemented as a web application. Mostly
because of the platform limitations there were no widely
known or used implementations of certain application types
for browser platform. Conventional office suite applications,
word processor, spreadsheet and presentation application,
are examples of such applications that were too difficult to
implement for the browser.

In the recent years new technologies and concepts have
been largely adopted to fill the interactivity gap between
desktop and web applications. One of these concepts, ad-
dressing the lack of interactivity, is called Ajax (Asyn-
chronous JavaScript and XML). Ajax is used to improve in-
teractions and data transfer between the web browser and
the server. The biggest advantage of Ajax is that it releases
web applications from the old client-server interaction mode
which required the whole page to be reloaded after every
client interaction with the server. This used to make web
applications heavy and slow to use and discouraged to im-
plement heavily interactive applications on web platform.

Even before Ajax concept highly interactive applications
for web applications could be done by installing plug-ins
to web browser. For example Flash applications and Java
applets could be used to implement highly interactive ap-
plications for web browser. The difference between Ajax
and browser plug-ins is simply that plug-ins require instal-
lation. The application code written for a specific browser
plug-in can not be interpreted on a standard browser out-of-
the-box but requires installation of the specific plug-in. Ajax
utilizes standard technologies implemented in all the recent
browsers. It does not require a plug-in to be installed.

In this paper we will first introduce the Ajax concept and
traditional web application interaction model in more detail
and discuss the technologies that form the base for Ajax. Af-
ter that we will explain what kind of benefits Ajax web ap-
plications, and web applications in general, have over the
desktop applications and also what are the drawbacks. We
will focus on web applications provided as a subscription
based, hosted service and use Google Docs office suite as an



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

example.

2 Background

2.1 Traditional Web Applications
World Wide Web was originally developed to deliver hyper-
text documents and that is also reflected to the way tradi-
tional web applications work. Almost every interaction with
web applications user interface causes an event to be fired
which is processed by sending a request to a server. The
server processes the request and replies with a document,
which the client’s browser renders on the screen. [4]

This kind of interaction model might work well for static
documents, but it is not ideal for web applications. Every
request to the server takes some time and user cannot do
anything but wait while the request is processed. [4] For ex-
ample, after every click of a button the user ends up waiting
for the results. Even if only a little part of the user inter-
face needs to be updated as a result of the click, the whole
page with the updates needs to be retrieved from server and
rendered again on the client’s browser.

This interaction mode causes lack of responsiveness expe-
rienced in traditional web applications and it is addressed by
Ajax technologies which are discussed next.

2.2 Ajax Web Applications
Term Ajax was first introduced by Jesse James Garrett in his
article “Ajax: A New Approach to Web Applications” [4]. In
the article Garrett defines the Ajax as a set of several tech-
nologies for web applications, not as a new technology itself.
Ajax incorporates XHTML (Extensible Hypertext Markup
Language) and CSS (Cascading Stylesheet) based presen-
tation, dynamic display and interaction using DOM (Docu-
ment Object Model), XML and XSLT (Extensible Stylesheet
Language Transformations) based data interchange and ma-
nipulation, asynchronous data retrieval using XMLHttpRe-
quest and JavaScript scripting language to bind all the tech-
nologies together [4]. Next, the technologies behind Ajax
will be presented shortly.

JavaScript

JavaScript can capture the user interface events from the
client which makes the interaction with the web application
possible without passing the events to server for processing
every time [14]. Events that do not require new data from
the server can be processed entirely on the client-side.

Document Object Model

DOM (Document Object Model) is a presentation of hyper-
text document as an object tree and it allows modifying the
document and thereby the presented content by JavaScript on
the client’s browser. It makes possible to modify the docu-
ment presentation and data without having to reload the page
from server every time a change is made. Modern browsers
provide documents as object model for JavaScript. For ex-
ample elements can be added and removed from page and

their properties can be changed using JavaScript and DOM.
[13]

Cascading Stylesheets

CSS aims to separate the presentation of document from its
contents. It provides the means to describe for example the
sizes, positions and colors of elements in a document [11, 2].
These properties are available and modifiable through DOM
with JavaScript.

XMLHttpRequest

XMLHttpRequest is an object, accessible by JavaScript,
which allows making requests from browser to server on
the background, asynchronously without reloading the docu-
ment after each and every request. Since the request is asyn-
chronous, the browser will not hang while waiting the re-
sponse for the request. Unlike the name of the object sug-
gests the data can be transferred in any format, including
XML, but not as the only format. [9, 1]

3 Office Suite Applications With Ajax
Using Ajax technologies has made it possible to make tradi-
tional web applications more interactive and responsive, and
thus improved the user experience. E-mail applications with
web user interface, webmails, have been available for years
and many of them have got a new, more interactive inter-
face as they have been converted to using Ajax. Companies
such as Microsoft, Yahoo and Google have introduced Ajax-
based webmail applications. Also, web based calendars have
existed before and now, for example Google has introduced
a web calendar application utilizing Ajax. Thus, Ajax has
been used to improve existing web applications.

In addition to improvements for old applications, richer
user interfaces achieved with Ajax have been applied to
bring traditional desktop-only applications to browser plat-
form. Google has an application suite named Google Apps
[7] which provides basic office applications as a service used
through web browser and their technology is largely based
on Ajax. The application suite includes calendar and web-
mail applications and also a package named Google Docs
[8] which provides presentation, spreadsheet and word pro-
cessor applications. This paper uses Google Docs suite as an
example when discussing the benefits and drawbacks of Ajax
web application approach versus desktop applications. This
certain application package was selected because it presents
new types of web applications that largely rely on Ajax. The
Google’s office suite works as a proof-of-concept of what
can be achieved with Ajax.

3.1 Google Docs Compared To Traditional
Desktop Applications

Since in this paper, we focus on hosted, subscription based
web applications such as Google Docs, we cannot omit the
fact that many of the features and qualities of the Google
Docs are common to all such hosted applications. SaaS
(Software as a Service) is the concept where customer buys



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

the service, the possibility to use the software and not the ac-
tual software. It distinguishes the ownership and possession
of the software from its use [10]. Usually the software is
hosted by the SaaS provider and fees are subscription based
rather than traditional licensing fees. There is no need to in-
stall application client programs. All the software resides on
the server.

Google Docs is an example of service based on the SaaS
concept. That is why the benefits and drawbacks of SaaS
concept are explained first. After presenting the common
SaaS case we will discuss in more detail about the Google
Docs features, benefits and drawbacks to illustrate the power
of Ajax-based web applications.

3.2 Benefits and drawbacks of SaaS concept
Although Google Docs brings new kinds of applications
available over Internet, most of the ideas behind it are based
on SaaS concept. That is why most of the qualities and fea-
tures of the software can be examined by looking at what is
said about the applications utilizing the SaaS concept. SaaS
concept has been researched for years and there exists lots of
studies about it [10][6][12]. In this section its quality prop-
erties, which apply also to Google Docs are discussed. An-
dreas Goeldi et al. describe these aspects in their research
study and the following listings are largely based on what
they have stated in their study [5].

3.2.1 Benefits for the Application Service Provider

Company providing applications for its customers can ben-
efit from utilizing the SaaS approach mostly by reduced de-
ployment, support and maintenance costs.

Since the software is run over the Internet using a web
browser, there is no need to install the software to customers
computers. As the customer buys the service, SaaS provider
needs to possibly only setup some user accounts for the new
users. Support of different kinds of client environments and
installation support is not required. It is sufficient to support
the quite well standardized browser platforms [5]. For ex-
ample the application can be run on any operating system,
hardware or network infrastructure. The only requirements
are web browser and Internet connection.

Also the maintenance costs are reduced, because issues
that come up with the application can usually be examined
and resolved without an expensive visit to a customer. Since
all data and software related to the application resides on the
server-side, issues can be diagnosed on the SaaS provider’s
side [5].

Changes such as bug fixes and new features can also be
easily deployed to customers. Deploying an update to all
customers requires only updating the software on the SaaS
provider’s servers. Client interaction is not required [5].

3.2.2 Benefits for the Customers

Since starting to use SaaS application does not usually re-
quire any new software to be installed on customers’ com-
puters, large IT infrastructure is not required either. For self-
hosted software customer usually needs to maintain in-house
servers and other infrastructure which are not required for

SaaS applications. This can bring cost savings and is espe-
cially favorable to small companies who do not have existing
infrastructure and large IT budget. [5]

Because the SaaS applications do not require any installa-
tion to specific machine, it is also very easy for an end-user
to move between different workstations and environments.
The SaaS based application and data is instantly available as
the end-user moves to a different workstation.

The entry costs for new software and deployment time can
also be very low in SaaS because of the hosted software and
subscription based fees [5]. This can be very good for a small
business that does not want to make big investments at the
beginning and also reduces the risk of starting to use a new
piece of software.

Also the reliability of the software can usually be made
better on hosted service than on small company’s own
servers [5]. The burden needed for supporting high relia-
bility of an application such as frequent backups, redundant
hardware, non-interfered and secured electricity supply and
constant monitoring is taken away from customer.

3.2.3 Drawbacks of SaaS

Privacy and security can be a huge issue for the customer
in SaaS concept. Because all the data is located on the
SaaS provider’s servers it’s privacy and overall security can
be trusted as much as the company that hosts the service.
For example, many large enterprises require full control
over company data and would not likely trust company like
Google to have the possibility to access it.

Also, there is the security risk that the SaaS applica-
tions could be brought down by a DDoS (Distributed De-
nial of Service) attack. During the critical business hours
this could have devastating financial effects for large group
of customers.[5]

The application could also be more vulnerable to external
attackers who want access to company data. Because the ap-
plication is hosted on a server which is accessible from pub-
lic Internet it might not be as well secured as an application
that is deployed to a company’s private, in-house, network.
For example, easily guessable, weak password could allow
attacker to get access to company data.

While the software is hosted on a computer on the net-
work it is available only when the customer has access to the
network and also the service is online. Internet access is es-
sential to use the software [5]. It is not possible to get any or
at least full benefit from the software if the Internet access is
not available. It means that, for example, the software can-
not be used in most airplanes and remote locations without
Internet access.

The integration of SaaS applications with existing appli-
cations is not well supported either. Especially integration
with legacy applications behind company firewall is not sup-
ported. [5] This is well understandable since the actual appli-
cation is run on a server located in public Internet and access
to private network is usually prevented from there.

One big issue with SaaS applications has also been that
they have not been able to provide as good usability, respon-
siveness and features as traditional web applications. [5].
This is something that Ajax has partially addressed. Next,



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

we will explain the improvements in this area by using the
Google Docs as an example.

3.3 Google Docs Overview

What Ajax has brought to web application can very well be
seen by looking at Google Docs applications. We have used
the applications ourselves and the overall feel of the text pro-
cessor and spreadsheet applications is quite pleasant. The
user interface is responsive, and the screen is not flickering
all the time. The applications succeed to bring the look and
feel of the normal desktop applications to the browser plat-
form. All the changes to documents are saved automatically
on the background so the user does not have to be afraid
of network outages. Basic keyboard shortcuts are also sup-
ported and it is easy to forget that you are working with a
web application.

Still the Google Docs is not perfect office suite. Features
provided by the Google’s office applications are quite lim-
ited. For example the text processor supports only the most
basic formatting, there is no formula editor available or other
more advanced features. On the other hand this makes the
application also easy to use, while there are no tens of menus
and toolbar icons where the needed features could be hidden.

Although the Google Docs does not have all the features
its desktop counterparts have it has some extra features com-
pared to them. Especially collaborative work in Google Docs
is very well supported. Stijn Dekeyser and Richard Watson
discuss the functionality of Google Docs from researcher
collaboration perspective in their technical paper titled Ex-
tending Google Docs to Collaborate on Research Papers [3].

Google Docs applications allow users to invite other peo-
ple to collaborate with a document. Invited collaborators can
be given permissions to only view the document or also per-
missions to edit it. Users can edit the document simulta-
neously and updates to document are synchronized to other
users view approximately every thirty seconds. If multiple
users edit exactly the same part of the document, a conflict
can occur. If users make a conflicting change to a document,
application informs the users about the conflict, shows the
conflicting text and reverts the conflicting part back to the
state before the conflict. The conflict can further be resolved
by selecting the preferred version of content and reapplying
it to the document. [3]

Google Docs applications also keep revision history of the
documents. User can check how the document looked like
at any time past, compare different revisions of the docu-
ment and revert back to a previous revision. [3] This version
control feature, versions the documents automatically on the
background so the user does not have to remember to make
the revisions.

The Google Docs applications also support exporting into
different formats for viewing, publishing and editing. Sup-
ported formats include PDF, Microsoft Word document and
HTML. This allows user to access their documents even
when working offline. [3]

Overall, the Google Docs is a simple application suite that
has the most essential functionality of office suite applica-
tions. Although it is probably suitable for most needs, it
cannot be seen as a total replacement for traditional desktop

office suites, because it is missing some advanced function-
ality.

4 Conclusion and Future Work

We discussed why traditional web applications cannot de-
liver the same user experience than desktop applications.
This is largely caused by the fact that the interaction model
with the server is not ideal for web applications and requires
retrieving and rendering the whole view on user’s browser
even though only a small part of the screen would really need
to be updated as a result of a user interaction. Transferring
data from server to client can only be done by passing a new
HTML document presenting the data to the client.

With Ajax technologies web application’s interaction with
server can be made more efficient. Standard browser tech-
nologies: XHTML, Cascading Stylesheets and JavaScript
programming language are utilized to update the user inter-
face view without requiring to retrieve and render the whole
view after every user interaction. Changes to the user in-
terface can be made incrementally by modifying the Docu-
ment Object Model tree and data can be passed, on back-
ground, in any format between the server and client using
XMLHttpRequest object. The user event handling is made
using JavaScript.

Ajax has allowed improving the interactivity and respon-
siveness of old web applications but it has also allowed im-
plementing some new web applications of which Google
Docs is an example. Google Docs is an office application
suite which includes basic word processor, spreadsheet and
presentation applications. The suite cannot compete with
desktop applications in terms of functionality, but it includes
some new features especially good for group collaboration.
User experience of Google Docs is already very close to
desktop applications, thanks to Ajax.

We also noted that since Google Docs is provided as a
hosted service rather than an installable application it shares
many benefits and drawbacks with other software utilizing
the SaaS concept. Most of these benefits come from tak-
ing the burden of maintenance away from customer, allow-
ing easy access and entry for the software, easier support
and software update deployment for the software provider.
Drawbacks of this approach are caused by the fact that all the
data and software resides on the software provider’s servers.
Servers are vulnerable to DDoS attacks and software user
needs to trust the provider to keep his or her data private.
Also the need for network connection can be seen as a draw-
back because it is not available all the time everywhere.

Based on the Google Docs it seems that it is possible to
achieve nearly desktop application like user experience with
a browser platform application. There are also many benefits
that this platform provides, but they do not come without
drawbacks.

In the future we would be interested in a study that would
elaborate the real contribution of Ajax to the web. Since
Ajax technologies existed before the actual term was intro-
duced, it is not very clear what is the new thing it has really
brought. Has it advanced the standardization of technologies
it is based on? Is Ajax just a product of a political manifesto,



TKK T-110.5190 Seminar on Internetworking 2008-04-28/29

which “legalized” JavaScript, that was previously considered
bad among web developers?

References
[1] Anne van Kesteren. The xmlhttprequest object, April

15, 2008. Accessed: April 15, 2008. http://www.
w3.org/TR/XMLHttpRequest/.

[2] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading
style sheets, level 2 css2 specification, May 12, 1998.
Accessed: April 14, 2008. http://www.w3.org/
TR/1998/REC-CSS2-19980512/.

[3] S. Dekeyser and R. Watson. Extending google
docs to collaborate on research papers. Tech-
nical report, The University of Southern Queens-
land, Australia, 2006. Accessed: March 16,
2008. http://www.sci.usq.edu.au/staff/
dekeyser/googledocs.pdf.

[4] J. J. Garrett. Ajax: A new approach to web ap-
plications, 2005. Accessed: February 8, 2008.
http://www.adaptivepath.com/ideas/
essays/archives/000385.php.

[5] A. Goeldi, T. B. Jones, and B. Lo. Google apps for en-
terprise installed solution. Technical report, MIT Sloan
School of Management, December 2006. Accessed:
March 14, 2008. http://tbjinvestments.
typepad.com/tbj_investments_llc/
files/15_567_google_enterprise_
installed_solution_goeldijoneslo.pdf.

[6] N. Gold, A. Mohan, C. Knight, and M. Munro.
Understanding service-oriented software. Software,
21(2):71–77, March-April 2004. Accessed: April 15,
2008. http://ieeexplore.ieee.org/iel5/
52/28453/01270766.pdf?tp=&isnumber=
&arnumber=1270766.

[7] Google Inc. Google apps. Accessed: February
11, 2008. http://www.google.com/a/help/
intl/en/business/applications.html.

[8] Google Inc. Google docs. Accessed: February
11, 2008. http://www.google.com/a/help/
intl/en/users/user_features.html.

[9] D. McLellan. Very dynamic web inter-
faces, 2 2005. Accessed: April 30, 2008.
http://www.xml.com/pub/a/2005/02/
09/xml-http-request.html.

[10] M. Turner, D. Budgen, and P. Brereton. Turn-
ing software into a service. Computer,
36(10):38–44, 2003. Accessed: March 14, 2008.
http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=1236470.

[11] W3Schools. Introduction to css. Accessed: April
30, 2008. http://www.w3schools.com/Css/
css_intro.asp.

[12] B. Waters. Software as a service: A look at the
customer benefits. Journal of Digital Asset Manage-
ment, 1(1):32–39, January 2005. Accessed: April
15, 2008. http://www.ingentaconnect.
com/content/pal/dam/2005/00000001/
00000001/art00007.

[13] World Wide Web Consortium. Document object model
(dom). Accessed: April 15, 2008. http://www.w3.
org/DOM/.

[14] World Wide Web Consortium. Javascript
events. Accessed: April 14, 2008. http:
//www.w3schools.com/js/js_events.asp.


